
-
Previous Article
Interlocked multi-node positive and negative feedback loops facilitate oscillations
- DCDS-B Home
- This Issue
-
Next Article
Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls
Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals
Friedrich Schiller University, Institute of Mathematics, Ernst-Abbe-Platz 2, 07743, Jena, Germany |
We consider a stochastic nonlinear evolution equation where the domain is given by a fractal set. The linear part of the equation is given by a Laplacian defined on the fractal. This equation generates a random dynamical system. The long time behavior is given by an attractor which has a finite Hausdorff dimension. We would like to reveal the connections between upper and lower estimates of this Hausdorff dimension and the geometry of the fractal. In particular, the parameter which determines these bounds is the spectral exponent of the fractal. Especially for the lower estimate we construct a local unstable random Lipschitz manifold.
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite-dimensional Analysis, Springer-Verlag, Berlin, second edition, 1999. A hitchhiker's guide.
doi: 10.1007/978-3-662-03961-8. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
M. T. Barlow, Diffusions on fractals, In Lectures on Probability Theory and Statistics (SaintFlour, 1995), volume 1690 of Lecture Notes in Math., pages 1-121. Springer, Berlin, 1998.
doi: 10.1007/BFb0092537. |
[4] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[5] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581.
doi: 10.1080/03605309808821394. |
[6] |
T. Caraballo, J. A. Langa and J. C. Robinson,
A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.
doi: 10.1098/rspa.2001.0819. |
[7] |
H. Crauel,
Random point attractors versus random set attractors, J. London Math. Soc. (2), 63 (2001), 413-427.
doi: 10.1017/S0024610700001915. |
[8] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[9] |
A. Debussche,
Hausdorff dimension of a random invariant set, J. Math. Pures Appl. (9), 77 (1998), 967-988.
doi: 10.1016/S0021-7824(99)80001-4. |
[10] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[11] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[12] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. |
[13] |
K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997. |
[14] |
F. Flandoli and B. Schmalfuss,
Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083. |
[15] |
U. R. Freiberg,
Analysis on fractal objects, Meccanica, 40 (2005), 419-436.
doi: 10.1007/s11012-005-2107-0. |
[16] |
B. M. Hambly,
Brownian motion on a random recursive Sierpinski gasket, Ann. Probab., 25 (1997), 1059-1102.
doi: 10.1214/aop/1024404506. |
[17] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[18] |
J. Kigami, Analysis on Fractals, volume 143 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511470943. |
[19] |
M. Rosaria Lancia, M. Cefalo and G. Dell'Acqua,
Numerical approximation of transmission problems across Koch-type highly conductive layers, Appl. Math. Comput., 218 (2012), 5453-5473.
doi: 10.1016/j.amc.2011.11.033. |
[20] |
M. L. Lapidus,
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325 (1991), 465-529.
doi: 10.1090/S0002-9947-1991-0994168-5. |
[21] |
K. Lu and B. Schmalfuẞ,
Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.
doi: 10.1016/j.jde.2006.09.024. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[23] |
B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, In V. Reitmann, T. Riedrich, and N. Koksch, editors, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour, (1992), 185-192. Google Scholar |
[24] |
B. Schmalfuß,
The random attractor of the stochastic Lorenz system, Z. Angew. Math. Phys., 48 (1997), 951-975.
doi: 10.1007/s000330050074. |
[25] |
B. Schmalfuss,
A random fixed point theorem and the random graph transformation, J. Math. Anal. Appl., 225 (1998), 91-113.
doi: 10.1006/jmaa.1998.6008. |
[26] |
B. Schmalfuss, Inertial manifolds for random differential equations, In Probability and Partial Differential Equations in Modern Applied Mathematics, volume 140 of IMA Vol. Math. Appl., pages 213-236. Springer, New York, 2005.
doi: 10.1007/978-0-387-29371-4_14. |
[27] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, volume 143 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[28] |
R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006. A tutorial. |
[29] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[30] |
T. Wanner, Linearization of random dynamical systems, In Dynamics Reported, volume 4 of Dynam. Report. Expositions Dynam. Systems (N. S. ), pages 203-269. Springer, Berlin, 1995. |
[31] |
H. Weyl,
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differential-gleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
[32] |
A. Wouk, A Course of Applied Functional Analysis, Wiley-Interscience [John Wiley & Sons], New York, 1979. Pure and Applied Mathematics. |
show all references
References:
[1] |
C. D. Aliprantis and K. C. Border, Infinite-dimensional Analysis, Springer-Verlag, Berlin, second edition, 1999. A hitchhiker's guide.
doi: 10.1007/978-3-662-03961-8. |
[2] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-12878-7. |
[3] |
M. T. Barlow, Diffusions on fractals, In Lectures on Probability Theory and Statistics (SaintFlour, 1995), volume 1690 of Lecture Notes in Math., pages 1-121. Springer, Berlin, 1998.
doi: 10.1007/BFb0092537. |
[4] |
M. T. Barlow and E. A. Perkins,
Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543-623.
doi: 10.1007/BF00318785. |
[5] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differential Equations, 23 (1998), 1557-1581.
doi: 10.1080/03605309808821394. |
[6] |
T. Caraballo, J. A. Langa and J. C. Robinson,
A stochastic pitchfork bifurcation in a reaction-diffusion equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2041-2061.
doi: 10.1098/rspa.2001.0819. |
[7] |
H. Crauel,
Random point attractors versus random set attractors, J. London Math. Soc. (2), 63 (2001), 413-427.
doi: 10.1017/S0024610700001915. |
[8] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[9] |
A. Debussche,
Hausdorff dimension of a random invariant set, J. Math. Pures Appl. (9), 77 (1998), 967-988.
doi: 10.1016/S0021-7824(99)80001-4. |
[10] |
J. Duan, K. Lu and B. Schmalfuss,
Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135.
doi: 10.1214/aop/1068646380. |
[11] |
J. Duan, K. Lu and B. Schmalfuss,
Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16 (2004), 949-972.
doi: 10.1007/s10884-004-7830-z. |
[12] |
K. Falconer, Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. |
[13] |
K. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997. |
[14] |
F. Flandoli and B. Schmalfuss,
Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative white noise, Stochastics Stochastics Rep., 59 (1996), 21-45.
doi: 10.1080/17442509608834083. |
[15] |
U. R. Freiberg,
Analysis on fractal objects, Meccanica, 40 (2005), 419-436.
doi: 10.1007/s11012-005-2107-0. |
[16] |
B. M. Hambly,
Brownian motion on a random recursive Sierpinski gasket, Ann. Probab., 25 (1997), 1059-1102.
doi: 10.1214/aop/1024404506. |
[17] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.
doi: 10.1007/978-1-4615-6359-4. |
[18] |
J. Kigami, Analysis on Fractals, volume 143 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511470943. |
[19] |
M. Rosaria Lancia, M. Cefalo and G. Dell'Acqua,
Numerical approximation of transmission problems across Koch-type highly conductive layers, Appl. Math. Comput., 218 (2012), 5453-5473.
doi: 10.1016/j.amc.2011.11.033. |
[20] |
M. L. Lapidus,
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture, Trans. Amer. Math. Soc., 325 (1991), 465-529.
doi: 10.1090/S0002-9947-1991-0994168-5. |
[21] |
K. Lu and B. Schmalfuẞ,
Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.
doi: 10.1016/j.jde.2006.09.024. |
[22] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[23] |
B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, In V. Reitmann, T. Riedrich, and N. Koksch, editors, International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour, (1992), 185-192. Google Scholar |
[24] |
B. Schmalfuß,
The random attractor of the stochastic Lorenz system, Z. Angew. Math. Phys., 48 (1997), 951-975.
doi: 10.1007/s000330050074. |
[25] |
B. Schmalfuss,
A random fixed point theorem and the random graph transformation, J. Math. Anal. Appl., 225 (1998), 91-113.
doi: 10.1006/jmaa.1998.6008. |
[26] |
B. Schmalfuss, Inertial manifolds for random differential equations, In Probability and Partial Differential Equations in Modern Applied Mathematics, volume 140 of IMA Vol. Math. Appl., pages 213-236. Springer, New York, 2005.
doi: 10.1007/978-0-387-29371-4_14. |
[27] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, volume 143 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9. |
[28] |
R. S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006. A tutorial. |
[29] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[30] |
T. Wanner, Linearization of random dynamical systems, In Dynamics Reported, volume 4 of Dynam. Report. Expositions Dynam. Systems (N. S. ), pages 203-269. Springer, Berlin, 1995. |
[31] |
H. Weyl,
Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differential-gleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
[32] |
A. Wouk, A Course of Applied Functional Analysis, Wiley-Interscience [John Wiley & Sons], New York, 1979. Pure and Applied Mathematics. |

[1] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[2] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[3] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[4] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[5] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[6] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[7] |
Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020177 |
[8] |
Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353 |
[9] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[10] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021004 |
[11] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[12] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[13] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[14] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[15] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[16] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[17] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[18] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[19] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[20] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]