American Institute of Mathematical Sciences

July  2019, 24(7): 3157-3174. doi: 10.3934/dcdsb.2018305

On the backward uniqueness of the stochastic primitive equations with additive noise

 1 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China 2 School of Mathematics and Statistics, Chongqing University, Chongqing city 401331, China

* Corresponding author: Guoli Zhou

Received  May 2018 Revised  July 2018 Published  October 2018

Fund Project: The second author is supported by NSF NNSF of China(Grant No. 11401057), Natural Science Foundation Project of CQ (Grant No. cstc2016jcyjA0326), Fundamental Research Funds for the Central Universities(Grant No. 2018CDXYST0024, ) and China Scholarship Council (Grant No.201506055003).

The previous works focus on the uniqueness for the initial-value problems of stochastic primitive equations. Uniqueness for the initial-value problems means that if the two initial conditions are the same, then the two solutions coincide with each other. However there is no work to answer what will happen to the solutions if the two initial conditions are different. This problem for the stochastic three dimensional primitive equations is addressed by the backward uniqueness established in this article. The backward uniqueness means that if two solutions intersect at time $t>0,$ then they are equal everywhere on the interval $(0, t).$ In other words, given two different initial-value conditions, the corresponding two solutions will never cross in the future. Hence this article can be viewed as a further study of the dependence of the solutions on the initial data.

Citation: Boling Guo, Guoli Zhou. On the backward uniqueness of the stochastic primitive equations with additive noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3157-3174. doi: 10.3934/dcdsb.2018305
References:
 [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar [2] H. Crauel, Markov measures for random dynamical systems, Stochastics Stochastics Rep., 3 (1991), 153-173.  doi: 10.1080/17442509108833733.  Google Scholar [3] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar [4] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields., 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar [5] C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar [6] C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differential Equations, 257 (2014), 4108-4132.  doi: 10.1016/j.jde.2014.08.003.  Google Scholar [7] C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar [8] C. Cao, J. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Communications on Pure and Applied Mathematics, 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar [9] C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar [10] C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys., 310 (2012), 537-568.  doi: 10.1007/s00220-011-1409-4.  Google Scholar [11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Google Scholar [12] A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar [13] Z. Dong and R. Zhang, Markov selection and W-strong Feller for 3D stochastic primitive equations, Science China Mathematics, 60 (2017), 1873-1900.  doi: 10.1007/s11425-016-0336-y.  Google Scholar [14] Z. Dong, J. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar [15] Z. Dong, J. Zhai and R. Zhang, Exponential mixing for 3D stochastic primitive equations of the large scale ocean, Available at arXiv: 1506.08514. Google Scholar [16] H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, Commun. Math. Sci., 10 (2012), 575-593.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar [17] H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Disc. and Cont. Dyn. Sys. B., 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar [18] A. E. Gill, Atmosphere-ocean Dynamics, International Geophysics Series, Academic Press, San Diego, 1982. Google Scholar [19] B. Guo and D. Huang, 3d stochastic primitive equations of the large-scale ocean: global well- posedness and attractors, Commun. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar [20] N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar [21] F. Guillén-González, N. Masmoudi and M. A. Rodr$\acute{\mathrm{i}}$guez-Bellido, Anisotropic estimates and strong solutions for the primitive equations, Diff. Int. Equ., 14 (2001), 1381-1408.   Google Scholar [22] H. Gao and C. Sun, Hausdorff dimension of random attractor for stochastic Navier-Stokes-Voight equations and primitive equations, Dyn. Partial Differ. Equ., 7 (2010), 307-326.  doi: 10.4310/DPDE.2010.v7.n4.a2.  Google Scholar [23] G. J. Haltiner, Numerical Weather Prediction, J. W. Wiley & Sons, New York, 1971. Google Scholar [24] G. J. Haltiner and R. T. Williams, Numerical Prediction and Dynamic Meteorology, John Wiley & Sons, New York, 1980. Google Scholar [25] C. Hu, R. Temam and M. Ziane, The primimitive equations of the large scale ocean under the small depth hypothesis, Disc. and Cont. Dyn. Sys., 9 (2003), 97-131.  doi: 10.3934/dcds.2003.9.97.  Google Scholar [26] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar [27] K. Liu, Stability of Stochastic Differential Equations in Infinite Dimensions, Springer Verlag, New York, 2004. Google Scholar [28] J. Lions and B. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.  Google Scholar [29] J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar [30] J. L. Lions, R. Temam and S. Wang, On the equations of the large scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar [31] J. L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean(CAOI), Computational Mechanics Advance, 1 (1993), 120pp.  Google Scholar [32] J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAOIII), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar [33] M. Petcu, On the backward uniqueness of the primitive equations, J. Math. Pures Appl., 87 (2007), 275-289.  doi: 10.1016/j.matpur.2007.01.002.  Google Scholar

show all references

References:
 [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. Google Scholar [2] H. Crauel, Markov measures for random dynamical systems, Stochastics Stochastics Rep., 3 (1991), 153-173.  doi: 10.1080/17442509108833733.  Google Scholar [3] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar [4] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields., 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar [5] C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Comm. Math. Phys., 337 (2015), 473-482.  doi: 10.1007/s00220-015-2365-1.  Google Scholar [6] C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differential Equations, 257 (2014), 4108-4132.  doi: 10.1016/j.jde.2014.08.003.  Google Scholar [7] C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214 (2014), 35-76.  doi: 10.1007/s00205-014-0752-y.  Google Scholar [8] C. Cao, J. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Communications on Pure and Applied Mathematics, 69 (2016), 1492-1531.  doi: 10.1002/cpa.21576.  Google Scholar [9] C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. of Math., 166 (2007), 245-267.  doi: 10.4007/annals.2007.166.245.  Google Scholar [10] C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Comm. Math. Phys., 310 (2012), 537-568.  doi: 10.1007/s00220-011-1409-4.  Google Scholar [11] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. Google Scholar [12] A. Debussche, N. Glatt-Holtz, R. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118.  doi: 10.1088/0951-7715/25/7/2093.  Google Scholar [13] Z. Dong and R. Zhang, Markov selection and W-strong Feller for 3D stochastic primitive equations, Science China Mathematics, 60 (2017), 1873-1900.  doi: 10.1007/s11425-016-0336-y.  Google Scholar [14] Z. Dong, J. Zhai and R. Zhang, Large deviation principles for 3D stochastic primitive equations, J. Differential Equations, 263 (2017), 3110-3146.  doi: 10.1016/j.jde.2017.04.025.  Google Scholar [15] Z. Dong, J. Zhai and R. Zhang, Exponential mixing for 3D stochastic primitive equations of the large scale ocean, Available at arXiv: 1506.08514. Google Scholar [16] H. Gao and C. Sun, Well-posedness and large deviations for the stochastic primitive equations in two space dimensions, Commun. Math. Sci., 10 (2012), 575-593.  doi: 10.4310/CMS.2012.v10.n2.a8.  Google Scholar [17] H. Gao and C. Sun, Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions, Disc. and Cont. Dyn. Sys. B., 21 (2016), 3053-3073.  doi: 10.3934/dcdsb.2016087.  Google Scholar [18] A. E. Gill, Atmosphere-ocean Dynamics, International Geophysics Series, Academic Press, San Diego, 1982. Google Scholar [19] B. Guo and D. Huang, 3d stochastic primitive equations of the large-scale ocean: global well- posedness and attractors, Commun. Math. Phys., 286 (2009), 697-723.  doi: 10.1007/s00220-008-0654-7.  Google Scholar [20] N. Glatt-Holtz, I. Kukavica, V. Vicol and M. Ziane, Existence and regularity of invariant measures for the three dimensional stochastic primitive equations, J. Math. Phys., 55 (2014), 051504, 34pp. doi: 10.1063/1.4875104.  Google Scholar [21] F. Guillén-González, N. Masmoudi and M. A. Rodr$\acute{\mathrm{i}}$guez-Bellido, Anisotropic estimates and strong solutions for the primitive equations, Diff. Int. Equ., 14 (2001), 1381-1408.   Google Scholar [22] H. Gao and C. Sun, Hausdorff dimension of random attractor for stochastic Navier-Stokes-Voight equations and primitive equations, Dyn. Partial Differ. Equ., 7 (2010), 307-326.  doi: 10.4310/DPDE.2010.v7.n4.a2.  Google Scholar [23] G. J. Haltiner, Numerical Weather Prediction, J. W. Wiley & Sons, New York, 1971. Google Scholar [24] G. J. Haltiner and R. T. Williams, Numerical Prediction and Dynamic Meteorology, John Wiley & Sons, New York, 1980. Google Scholar [25] C. Hu, R. Temam and M. Ziane, The primimitive equations of the large scale ocean under the small depth hypothesis, Disc. and Cont. Dyn. Sys., 9 (2003), 97-131.  doi: 10.3934/dcds.2003.9.97.  Google Scholar [26] I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean, Nonlinearity, 20 (2007), 2739-2753.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar [27] K. Liu, Stability of Stochastic Differential Equations in Infinite Dimensions, Springer Verlag, New York, 2004. Google Scholar [28] J. Lions and B. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.  Google Scholar [29] J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5 (1992), 237-288.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar [30] J. L. Lions, R. Temam and S. Wang, On the equations of the large scale ocean, Nonlinearity, 5 (1992), 1007-1053.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar [31] J. L. Lions, R. Temam and S. Wang, Models of the coupled atmosphere and ocean(CAOI), Computational Mechanics Advance, 1 (1993), 120pp.  Google Scholar [32] J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAOIII), J. Math. Pures Appl., 74 (1995), 105-163.   Google Scholar [33] M. Petcu, On the backward uniqueness of the primitive equations, J. Math. Pures Appl., 87 (2007), 275-289.  doi: 10.1016/j.matpur.2007.01.002.  Google Scholar
 [1] Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047 [2] Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320 [3] Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398 [4] Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 [5] Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 [6] Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 [7] Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323 [8] Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 [9] Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 [10] Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 [11] Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 [12] Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 [13] Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 [14] Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383 [15] Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 [16] Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468 [17] Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388 [18] Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 [19] Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019 [20] Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

2019 Impact Factor: 1.27

Article outline