
-
Previous Article
Regularity of solutions to time fractional diffusion equations
- DCDS-B Home
- This Issue
-
Next Article
On the backward uniqueness of the stochastic primitive equations with additive noise
Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates
1. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
2. | College of Science, Southwest Petroleum University, Chengdu, Sichuan 610500, China |
The main aim of this paper is to study the bifurcation solutions associated with the spinor Bose-Einstein condensates. Based on the Principle of Hamilton Dynamics and the Principle of Lagrangian Dynamics, a general pattern formation equation for the spinor Bose-Einstein condensates is established. Moreover, three kinds of critical conditions for eigenvalues are obtained under spectrum analysis and the different external confining potentials. With the change of different external potentials, the different topological structures of bifurcation solutions for the spinor Bose-Einstein condensates system are derived from steady state bifurcation theory.
References:
[1] |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201. Google Scholar |
[2] |
W. Bao and Y. Zhang,
Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates, Methods Appl. Anal., 17 (2010), 49-80.
doi: 10.4310/MAA.2010.v17.n1.a2. |
[3] |
D. Bitko, T. F. Rosenbaum and G. Aeppli, Quantum Critical Behavior for a Model Magnet, Phys. Rev. Lett., 77 (1996), 940. Google Scholar |
[4] |
I. Bloch, M. Greiner, O. Mandel, T. W. Hänsch and T. Esslinger, Sympathetic cooling of 85 Rb, and 87 Rb, Phys. Rev. A, 64 (2001), p2. Google Scholar |
[5] |
P. Chandra, G. G. Lonzarich, S. E. Rowley and J. F. Scott, Prospects and applications near ferroelectric quantum phase transitions: A key issues review, Rep. Progr. Phys., 80 (2017), 112502, 24pp.
doi: 10.1088/1361-6633/aa82d2. |
[6] |
L. W. Clark, L. Feng and C. Chin,
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science, 354 (2016), 606-610.
doi: 10.1126/science.aaf9657. |
[7] |
R. Coldea, D. A. Tennant, E. M. Wheeler et al., Quantum criticality in an ising chain: Experimental evidence for emergent e8 symmetry, Science, 327 (2010), 177-180. Google Scholar |
[8] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev.Mod. Phys., 71 (1998), 463-512. Google Scholar |
[9] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 39-69. Google Scholar |
[10] |
F. J. Dyson, E. H. Lieb and B. Simon,
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., 18 (1978), 335-383.
doi: 10.1007/BF01106729. |
[11] |
A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), 647. Google Scholar |
[12] |
C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A. 471 (2015), 20140353, 24 pp.
doi: 10.1098/rspa.2014.0353. |
[13] |
M. Greiner, I. Bloch and T. W. Hänsch, et. al., Magnetic transport of trapped cold atoms over a large distance, Physical Review A, 63 (2001), 031401. Google Scholar |
[14] |
T.-L. Ho, Spinor bose condensates in optical traps, Physical review letters, 81 (1998), 742-745. Google Scholar |
[15] |
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 6 (1973), 1181. Google Scholar |
[16] |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Amsterdam, 2003. Google Scholar |
[17] |
R. Liu, T. Ma, S. Wang and J. Yang, hermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B., 2018, to appear. Google Scholar |
[18] |
H. Liu, T. Sengul, S. Wang and P. Zhang,
Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.
doi: 10.4310/CMS.2015.v13.n5.a10. |
[19] |
E. K. Luckins and R. A. Van Gorder,
Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains, Ann. Physics, 388 (2018), 206-234.
doi: 10.1016/j.aop.2017.11.009. |
[20] |
X. Luo, Y. Zou, L. Wu, Q. Liu, M. Han, M. Tey and L. You,
Deterministic entanglement generation from driving through quantum phase transitions, Science, 355 (2017), 620-623.
doi: 10.1126/science.aag1106. |
[21] |
T. Ma, D. Li, R. Liu and J. Yang, Mathematical Theory for Quantum Phase Transitions, 2016, see arXiv: 1610.06988 Google Scholar |
[22] |
T. Ma, R. Liu and J. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese), Science Press, Beijing, 2018. Google Scholar |
[23] |
T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd. : Hackensack, NJ, 2005.
doi: 10.1142/5827. |
[24] |
T. Ma and S. Wang,
Dynamic transition theory for thermohaline circulation, Phys. D, 239 (2010), 167-189.
doi: 10.1016/j.physd.2009.10.014. |
[25] |
T. Ma and S. Wang,
Dynamic transition and pattern formation in Taylor problem, Chin. Ann. Math. Ser. B, 31 (2010), 953-974.
doi: 10.1007/s11401-010-0610-7. |
[26] |
T. Ma and S. Wang,
Phase transitions for Belousov-Zhabotinsky reactions, Math. Methods Appl. Sci., 34 (2011), 1381-1397.
doi: 10.1002/mma.1446. |
[27] |
T. Ma and S. Wang,
Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.
doi: 10.3934/dcdsb.2014.19.2809. |
[28] |
T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[29] |
T. Ma and S. Wang, Mathematical Principles of Theoretical Physics, Science Press, Beijing, 2015. Google Scholar |
[30] |
T. Ma and S. Wang, Topological Phase Transitions Ⅰ: Quantum Phase Transitions, to appear, (2018) or (Tian Ma, Shouhong Wang. Topological Phase Transitions Ⅰ: Quantum Phase Transitions, 2017. < hal-01651908 > ). Google Scholar |
[31] |
T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, Journal of the Physical Society of Japan, 67 (1998), 1822-1825. Google Scholar |
[32] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
|
[33] |
J. Rogel-Salazar, The Gross-Pitaevskii equation and Bose-Einstein condensates, Eur. J. Phys., 34 (2013), 247-257. Google Scholar |
[34] |
R. Seiringer,
Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509.
doi: 10.1007/s00220-002-0695-2. |
[35] |
R. Seiringer, Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation, J. Math. Phys., 55 (2014), 075209, 18pp.
doi: 10.1063/1.4881536. |
[36] |
T. Sengul, J. Shen and S. Wang,
Pattern formations of 2D Rayleigh-Bénard convection with no-slip boundary conditions for the velocity at the critical length scales, Math. Methods Appl. Sci., 38 (2015), 3792-3806.
doi: 10.1002/mma.3317. |
[37] |
T. Sengul and S. Wang,
Pattern formation in Rayleigh-Bénard convection, Commun. Math. Sci., 11 (2013), 315-343.
doi: 10.4310/CMS.2013.v11.n1.a10. |
[38] |
A. Sütő, Equivalence of Bose-Einstein condensation and symmetry breaking, Phys. Rev. Lett., 94 (2005), 080402. Google Scholar |
[39] |
M. Vojta,
Quantum phase transition, Rep. Prog. Phys., 66 (2003), 2069-2110.
doi: 10.1088/0034-4885/66/12/R01. |
show all references
References:
[1] |
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 269 (1995), 198-201. Google Scholar |
[2] |
W. Bao and Y. Zhang,
Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates, Methods Appl. Anal., 17 (2010), 49-80.
doi: 10.4310/MAA.2010.v17.n1.a2. |
[3] |
D. Bitko, T. F. Rosenbaum and G. Aeppli, Quantum Critical Behavior for a Model Magnet, Phys. Rev. Lett., 77 (1996), 940. Google Scholar |
[4] |
I. Bloch, M. Greiner, O. Mandel, T. W. Hänsch and T. Esslinger, Sympathetic cooling of 85 Rb, and 87 Rb, Phys. Rev. A, 64 (2001), p2. Google Scholar |
[5] |
P. Chandra, G. G. Lonzarich, S. E. Rowley and J. F. Scott, Prospects and applications near ferroelectric quantum phase transitions: A key issues review, Rep. Progr. Phys., 80 (2017), 112502, 24pp.
doi: 10.1088/1361-6633/aa82d2. |
[6] |
L. W. Clark, L. Feng and C. Chin,
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition, Science, 354 (2016), 606-610.
doi: 10.1126/science.aaf9657. |
[7] |
R. Coldea, D. A. Tennant, E. M. Wheeler et al., Quantum criticality in an ising chain: Experimental evidence for emergent e8 symmetry, Science, 327 (2010), 177-180. Google Scholar |
[8] |
F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev.Mod. Phys., 71 (1998), 463-512. Google Scholar |
[9] |
K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., 75 (1995), 39-69. Google Scholar |
[10] |
F. J. Dyson, E. H. Lieb and B. Simon,
Phase transitions in quantum spin systems with isotropic and nonisotropic interactions, J. Stat. Phys., 18 (1978), 335-383.
doi: 10.1007/BF01106729. |
[11] |
A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys., 81 (2009), 647. Google Scholar |
[12] |
C. Hsia, C. Lin, T. Ma and S. Wang, Tropical atmospheric circulations with humidity effects, Proc. A. 471 (2015), 20140353, 24 pp.
doi: 10.1098/rspa.2014.0353. |
[13] |
M. Greiner, I. Bloch and T. W. Hänsch, et. al., Magnetic transport of trapped cold atoms over a large distance, Physical Review A, 63 (2001), 031401. Google Scholar |
[14] |
T.-L. Ho, Spinor bose condensates in optical traps, Physical review letters, 81 (1998), 742-745. Google Scholar |
[15] |
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 6 (1973), 1181. Google Scholar |
[16] |
L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann, Amsterdam, 2003. Google Scholar |
[17] |
R. Liu, T. Ma, S. Wang and J. Yang, hermodynamical potentials of classical and quantum systems, Discrete Contin. Dyn. Syst. Ser. B., 2018, to appear. Google Scholar |
[18] |
H. Liu, T. Sengul, S. Wang and P. Zhang,
Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.
doi: 10.4310/CMS.2015.v13.n5.a10. |
[19] |
E. K. Luckins and R. A. Van Gorder,
Bose-Einstein condensation under the cubic-quintic Gross-Pitaevskii equation in radial domains, Ann. Physics, 388 (2018), 206-234.
doi: 10.1016/j.aop.2017.11.009. |
[20] |
X. Luo, Y. Zou, L. Wu, Q. Liu, M. Han, M. Tey and L. You,
Deterministic entanglement generation from driving through quantum phase transitions, Science, 355 (2017), 620-623.
doi: 10.1126/science.aag1106. |
[21] |
T. Ma, D. Li, R. Liu and J. Yang, Mathematical Theory for Quantum Phase Transitions, 2016, see arXiv: 1610.06988 Google Scholar |
[22] |
T. Ma, R. Liu and J. Yang, Physical World from the Mathematical Point of View: Statistical Physics and Critical Phase Transition Theory (in Chinese), Science Press, Beijing, 2018. Google Scholar |
[23] |
T. Ma and S. Wang, Bifurcation Theory and Applications, World Scientific Publishing Co. Pte. Ltd. : Hackensack, NJ, 2005.
doi: 10.1142/5827. |
[24] |
T. Ma and S. Wang,
Dynamic transition theory for thermohaline circulation, Phys. D, 239 (2010), 167-189.
doi: 10.1016/j.physd.2009.10.014. |
[25] |
T. Ma and S. Wang,
Dynamic transition and pattern formation in Taylor problem, Chin. Ann. Math. Ser. B, 31 (2010), 953-974.
doi: 10.1007/s11401-010-0610-7. |
[26] |
T. Ma and S. Wang,
Phase transitions for Belousov-Zhabotinsky reactions, Math. Methods Appl. Sci., 34 (2011), 1381-1397.
doi: 10.1002/mma.1446. |
[27] |
T. Ma and S. Wang,
Dynamic transition and pattern formation for chemotactic systems, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 2809-2835.
doi: 10.3934/dcdsb.2014.19.2809. |
[28] |
T. Ma and S. Wang, Phase Transition Dynamics, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[29] |
T. Ma and S. Wang, Mathematical Principles of Theoretical Physics, Science Press, Beijing, 2015. Google Scholar |
[30] |
T. Ma and S. Wang, Topological Phase Transitions Ⅰ: Quantum Phase Transitions, to appear, (2018) or (Tian Ma, Shouhong Wang. Topological Phase Transitions Ⅰ: Quantum Phase Transitions, 2017. < hal-01651908 > ). Google Scholar |
[31] |
T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in alkali atom gases, Journal of the Physical Society of Japan, 67 (1998), 1822-1825. Google Scholar |
[32] |
P. H. Rabinowitz,
Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
|
[33] |
J. Rogel-Salazar, The Gross-Pitaevskii equation and Bose-Einstein condensates, Eur. J. Phys., 34 (2013), 247-257. Google Scholar |
[34] |
R. Seiringer,
Gross-Pitaevskii theory of the rotating Bose gas, Commun. Math. Phys., 229 (2002), 491-509.
doi: 10.1007/s00220-002-0695-2. |
[35] |
R. Seiringer, Bose gases, Bose-Einstein condensation, and the Bogoliubov approximation, J. Math. Phys., 55 (2014), 075209, 18pp.
doi: 10.1063/1.4881536. |
[36] |
T. Sengul, J. Shen and S. Wang,
Pattern formations of 2D Rayleigh-Bénard convection with no-slip boundary conditions for the velocity at the critical length scales, Math. Methods Appl. Sci., 38 (2015), 3792-3806.
doi: 10.1002/mma.3317. |
[37] |
T. Sengul and S. Wang,
Pattern formation in Rayleigh-Bénard convection, Commun. Math. Sci., 11 (2013), 315-343.
doi: 10.4310/CMS.2013.v11.n1.a10. |
[38] |
A. Sütő, Equivalence of Bose-Einstein condensation and symmetry breaking, Phys. Rev. Lett., 94 (2005), 080402. Google Scholar |
[39] |
M. Vojta,
Quantum phase transition, Rep. Prog. Phys., 66 (2003), 2069-2110.
doi: 10.1088/0034-4885/66/12/R01. |


[1] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[2] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[3] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[4] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[5] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[6] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[7] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[8] |
Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021038 |
[9] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[10] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[11] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[12] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[13] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281 |
[14] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[15] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
[16] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[17] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[18] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[19] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[20] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]