The purpose of this work is to prove the existence and uniqueness of the solution for a Cahn-Hilliard/Allen-Cahn system with singular potentials (and, in particular, the thermodynamically relevant logarithmic potentials). We also prove the existence of the global attractor. Finally, we show further regularity results and we prove a strict separation property (from the pure states) in one space dimension.
Citation: |
A. Adams and J. Fournier, Sobolev Spaces, 2nd edition, Academic Press, 2003.
![]() ![]() |
|
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, 1st edition, Elsevier, Amsterdam, 1992.
![]() ![]() |
|
D. Brochet
, D. Hilhorst
and A. Novick-Cohen
, Finite-Dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 7 (1994)
, 83-87.
doi: 10.1016/0893-9659(94)90118-X.![]() ![]() ![]() |
|
J. W. Cahn
and A. Novick-Cohen
, Evolution equations for phase separation and ordering in binary alloys, Statistical Phys., 76 (1994)
, 877-909.
![]() |
|
J. W. Cahn
and J. E. Hilliard
, Free energy of a nonuniform system I, Interfacial free energy, J. Chem. Phys., 28 (1958)
, 258-267.
doi: 10.1063/1.1744102.![]() ![]() |
|
L. Cherfils
, A. Miranville
and S. Zelik
, The Cahn-Hilliard equation with logarithmic nonlinear terms, Milan J. Math., 79 (2011)
, 561-596.
doi: 10.1007/s00032-011-0165-4.![]() ![]() ![]() |
|
R. Dal Passo
, L. Giacomelli
and A. Novick-Cohen
, Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility, Interfaces Free Boundaries, 1 (1999)
, 199-226.
doi: 10.4171/IFB/9.![]() ![]() ![]() |
|
A. Giorgini
, M. Grasselli
and A. Miranville
, The Cahn-Hilliard-Oono equation with singular potential, Math. Models Methods Appl. Sci., 27 (2017)
, 2485-2510.
doi: 10.1142/S0218202517500506.![]() ![]() ![]() |
|
P. C. Millett
, S. Rokkam
, A. El-Azab
, M. Tonks
and D. Wolf
, Void nucleation and growth in irradiated polycrystalline metals: A phase-field model, Modelling Simul. Mater. Sci. Eng., 17 (2009)
, 0064-003.
doi: 10.1088/0965-0393/17/6/064003.![]() ![]() |
|
A. Miranville
, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006)
, 163-182.
doi: 10.1007/s11533-005-0010-5.![]() ![]() ![]() |
|
A. Miranville
, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2 (2017)
, 479-544.
doi: 10.3934/Math.2017.2.479.![]() ![]() |
|
A. Miranville
, W. Saoud
and R. Talhouk
, Asymptotic behavior of a model for order-disorder and phase separation, Asympt. Anal., 103 (2017)
, 57-76.
doi: 10.3233/ASY-171419.![]() ![]() ![]() |
|
A. Miranville
and S. Zelik
, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27 (2004)
, 545-582.
doi: 10.1002/mma.464.![]() ![]() ![]() |
|
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbouded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations (eds. C.M. Dafermos and M. Pokorny), Elsevier, Amsterdam, (2008), 103–200.
doi: 10.1016/S1874-5717(08)00003-0.![]() ![]() ![]() |
|
A. Miranville
and S. Zelik
, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Cont. Dyn. Sys., 28 (2010)
, 275-310.
doi: 10.3934/dcds.2010.28.275.![]() ![]() ![]() |
|
T. Nagai
, T. Senba
and K. Yoshida
, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997)
, 411-433.
![]() ![]() |
|
A. Novick-Cohen
, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Phys. D, 137 (2000)
, 1-24.
doi: 10.1016/S0167-2789(99)00162-1.![]() ![]() ![]() |
|
A. Novick-Cohen
and L. Peres Hari
, Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system: The partial wetting case, Phys. D, 209 (2005)
, 205-235.
doi: 10.1016/j.physd.2005.06.028.![]() ![]() ![]() |
|
S. Rokkam
, A. El-Azab
, P. Millett
and D. Wolf
, Phase field modeling of void nucleation and growth in irradiated metals, Modelling Simul. Mater. Sci. Eng., 17 (2009)
, 0064-002.
![]() |
|
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, American Mathematical Society, 2001.
doi: 10.1090/chel/343.![]() ![]() ![]() |
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Applied Mathematical Sciences, Volume 68, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3.![]() ![]() ![]() |
|
M. R. Tonks
, D. Gaston
, P. C. Millett
, D. Andrs
and P. Talbot
, An object-oriented finite element framework for multiphysics phase field simulations, Comput. Mater. Sci., 51 (2012)
, 20-29.
doi: 10.1016/j.commatsci.2011.07.028.![]() ![]() |
|
L. Wang, J. Lee, M. Anitescu, A. E. Azab, L. C. Mcinnes, T. Munson and B. Smith, A differential variational inequality approach for the simulation of heterogeneous materials, in Proc. SciDAC, 2011.
![]() |
|
Y. Xia
, Y. Xu
and C. W. Shu
, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009)
, 821-835.
![]() ![]() |
|
C. Yang
, X. C. Cai
, D. E. Keyes
and M. Pernice
, NKS method for the implicit solution of a coupled allen-cahn/cahn-hilliard system, Domain Decomposition Methods in Science and Engineering, 21 (2014)
, 819-827.
doi: 10.1007/978-3-319-05789-7_79.![]() ![]() |