August  2019, 24(8): 3689-3711. doi: 10.3934/dcdsb.2018311

Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient

1. 

Dpto. de Matemática, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70910-900, Brasília - DF, Brazil

2. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, Sevilla, C/. Tarfia s/n, 41012, Spain

To Peter Kloeden for his 70th birthday

Received  March 2018 Revised  July 2018 Published  October 2018

In this paper we study a stationary problem arising from population dynamics with a local and nonlocal variable diffusion coefficient. We show the existence of an unbounded continuum of positive solutions that bifurcates from the trivial solution. The global structure of this continuum depends on the value of the nonlocal diffusion at infinity and the relative position of the refuge of the species and of the sets where it diffuses locally and not locally, respectively.

Citation: Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311
References:
[1]

C. O. AlvesF. J. S. A. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems, Topol. Methods Nonlinear Anal., 49 (2017), 497-509.   Google Scholar

[2]

A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some semilinear Schrödinger equations, Math. Z.,, 224 (1997), 347-362.  doi: 10.1007/PL00004586.  Google Scholar

[3]

D. ArcoyaT. Leonori and A. Primo, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano Theorem, Acta Appl. Math.,, 127 (2013), 87-104.  doi: 10.1007/s10440-012-9792-1.  Google Scholar

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[7]

M. Chipot and F. J. S. A. Corrêa, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc., New Series, 40 (2009), 1-13.  doi: 10.1007/s00574-009-0017-9.  Google Scholar

[8]

M. Chipot and P. Roy, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), 289-300.   Google Scholar

[9]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, A non-local non-autonomous diffusion problem: linear and sublinear cases, Z. Angew. Math. Phys., 68 (2017), Art. 108, 20 pp. doi: 10.1007/s00033-017-0856-y.  Google Scholar

[10]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, The influence of a metasolution on the behaviour of the logistic equation with nonlocal diffusion coefficient, Calc. Var. Partial Differential Equations, 57 (2018), Art. 100, 26 pp. doi: 10.1007/s00526-018-1385-z.  Google Scholar

[11]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.  Google Scholar

[12]

J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, Taylor and Francis Group, 2016.  Google Scholar

[13]

A. Molino and J. D. Rossi, A concave-convex problem with a variable operator, Calc. Var. Partial Differential Equations, 57 (2018), Art. 10, 26 pp. doi: 10.1007/s00526-017-1291-9.  Google Scholar

[14]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u + {\rm{ }}\lambda u - h{u^p} = 0$ on the compact manifolds, Transactions of the American Mathematical Society, 331 (1992), 503-527.  doi: 10.2307/2154124.  Google Scholar

[15]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[16]

P. Roy, Existence results for some nonlocal problems, Differ. Equ. Appl., 6 (2014), 361-381.  doi: 10.7153/dea-06-20.  Google Scholar

[17]

B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problem, Bound. Value. Probl., 2016, Paper No. 165, 35 pp. doi: 10.1186/s13661-016-0670-z.  Google Scholar

[18]

B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72-102.  doi: 10.1016/j.jmaa.2016.04.023.  Google Scholar

show all references

References:
[1]

C. O. AlvesF. J. S. A. Corrêa and M. Chipot, On a class of intermediate local-nonlocal elliptic problems, Topol. Methods Nonlinear Anal., 49 (2017), 497-509.   Google Scholar

[2]

A. Ambrosetti and J. L. Gámez, Branches of positive solutions for some semilinear Schrödinger equations, Math. Z.,, 224 (1997), 347-362.  doi: 10.1007/PL00004586.  Google Scholar

[3]

D. ArcoyaT. Leonori and A. Primo, Existence of solutions for semilinear nonlocal elliptic problems via a Bolzano Theorem, Acta Appl. Math.,, 127 (2013), 87-104.  doi: 10.1007/s10440-012-9792-1.  Google Scholar

[4]

H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55-64.  doi: 10.1016/0362-546X(86)90011-8.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[6]

T. CaraballoM. Herrera-Cobos and P. Marín-Rubio, Long-time behavior of a non-autonomous parabolic equation with nonlocal diffusion and sublinear terms, Nonlinear Anal., 121 (2015), 3-18.  doi: 10.1016/j.na.2014.07.011.  Google Scholar

[7]

M. Chipot and F. J. S. A. Corrêa, Boundary layer solutions to functional elliptic equations, Bull. Braz. Math. Soc., New Series, 40 (2009), 1-13.  doi: 10.1007/s00574-009-0017-9.  Google Scholar

[8]

M. Chipot and P. Roy, Existence results for some functional elliptic equations, Differential Integral Equations, 27 (2014), 289-300.   Google Scholar

[9]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, A non-local non-autonomous diffusion problem: linear and sublinear cases, Z. Angew. Math. Phys., 68 (2017), Art. 108, 20 pp. doi: 10.1007/s00033-017-0856-y.  Google Scholar

[10]

T. S. Figueiredo-Sousa, C. Morales-Rodrigo and A. Suárez, The influence of a metasolution on the behaviour of the logistic equation with nonlocal diffusion coefficient, Calc. Var. Partial Differential Equations, 57 (2018), Art. 100, 26 pp. doi: 10.1007/s00526-018-1385-z.  Google Scholar

[11]

J. López-Gómez, Linear Second Order Elliptic Operators, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi: 10.1142/8664.  Google Scholar

[12]

J. López-Gómez, Metasolutions of Parabolic Equations in Population Dynamics, Taylor and Francis Group, 2016.  Google Scholar

[13]

A. Molino and J. D. Rossi, A concave-convex problem with a variable operator, Calc. Var. Partial Differential Equations, 57 (2018), Art. 10, 26 pp. doi: 10.1007/s00526-017-1291-9.  Google Scholar

[14]

T. Ouyang, On the positive solutions of semilinear equations $\Delta u + {\rm{ }}\lambda u - h{u^p} = 0$ on the compact manifolds, Transactions of the American Mathematical Society, 331 (1992), 503-527.  doi: 10.2307/2154124.  Google Scholar

[15]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[16]

P. Roy, Existence results for some nonlocal problems, Differ. Equ. Appl., 6 (2014), 361-381.  doi: 10.7153/dea-06-20.  Google Scholar

[17]

B. Yan and T. Ma, The existence and multiplicity of positive solutions for a class of nonlocal elliptic problem, Bound. Value. Probl., 2016, Paper No. 165, 35 pp. doi: 10.1186/s13661-016-0670-z.  Google Scholar

[18]

B. Yan and D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem, J. Math. Anal. Appl., 442 (2016), 72-102.  doi: 10.1016/j.jmaa.2016.04.023.  Google Scholar

Figure 1.  Bifurcation diagrams when $\lambda _0<\lambda _\infty<\infty$ and $\lambda _\infty<\lambda _0<\infty$, respectively
Figure 2.  Bifurcation diagrams when $\lambda _\infty = 0$ and $\lambda_\infty = \infty$, respectively. For example, this last diagram appears when $b\geq b_0>0$
[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[5]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[10]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (150)
  • HTML views (715)
  • Cited by (0)

[Back to Top]