In this paper, we study a Navier-Stokes delay differential inclusion with time fractional derivative of order $\alpha\in(0,1)$. We first prove the local and global existence, decay and regularity properties of mild solutions when the initial data belongs to $C([-h,0];D(A_r^\varepsilon))$. The fractional resolvent operator theory and some techniques of measure of noncompactness are successfully applied to obtain the results.
Citation: |
R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser, Verlag, Basel, 1992.
doi: 10.1007/978-3-0348-5727-7.![]() ![]() ![]() |
|
B. De Andrade
, A. N. Carvalho
, P. M. Carvalho-Neto
and P. Marín-Rubio
, Semilinear fractional differential equations: Global solutions, critical nonlinearities and comparison results, Topol. Methods Nonlinear Anal., 45 (2015)
, 439-467.
doi: 10.12775/TMNA.2015.022.![]() ![]() ![]() |
|
T. Caraballo
and X. Y. Han
, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015)
, 1079-1101.
doi: 10.3934/dcdss.2015.8.1079.![]() ![]() ![]() |
|
T. Caraballo
and X. Y. Han
, Stability of stationary solutions to 2D-Navier-Stokes models with delays, Dyn. Partial Differ. Equ., 11 (2014)
, 345-359.
doi: 10.4310/DPDE.2014.v11.n4.a3.![]() ![]() ![]() |
|
T. Caraballo
and J. Real
, Attractors for 2D-Navier-Stokes models with delays, J. Differential Equations, 205 (2004)
, 271-297.
doi: 10.1016/j.jde.2004.04.012.![]() ![]() ![]() |
|
T. Caraballo
and J. Real
, Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003)
, 3181-3194.
doi: 10.1098/rspa.2003.1166.![]() ![]() ![]() |
|
P. M. Carvalho-Neto, Fractional Differential Equations: A Novel Study of Local and Global Solutions in Banach Spaces, PhD thesis, Universidade de São Paulo, São Carlos, 2013.
![]() |
|
P. M. Carvalho-Neto
and G. Planas
, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^{N}$, J. Differential Equations, 259 (2015)
, 2948-2980.
doi: 10.1016/j.jde.2015.04.008.![]() ![]() ![]() |
|
Y. K. Chen
and C. H. Wei
, Partial regularity of solutions to the fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 36 (2016)
, 5309-5322.
doi: 10.3934/dcds.2016033.![]() ![]() ![]() |
|
P. Y. Chen
and Y. X. Li
, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014)
, 711-728.
doi: 10.1007/s00033-013-0351-z.![]() ![]() ![]() |
|
P. Y. Chen
, X. P. Zhang
and Y. X. Li
, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73 (2017)
, 794-803.
doi: 10.1016/j.camwa.2017.01.009.![]() ![]() ![]() |
|
P. Y. Chen
, X. P. Zhang
and Y. X. Li
, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17 (2018)
, 1975-1992.
doi: 10.3934/cpaa.2018094.![]() ![]() ![]() |
|
J. W. Cholewa
and T. Dlotko
, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018)
, 2967-2988.
doi: 10.3934/dcdsb.2017149.![]() ![]() ![]() |
|
L. Debbi
, Well-posedness of the multidimensional fractional stochastic Navier-Stokes equations on the torus and on bounded domains, J. Math. Fluid Mech., 18 (2016)
, 25-69.
doi: 10.1007/s00021-015-0234-5.![]() ![]() ![]() |
|
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992.
doi: 10.1515/9783110874228.![]() ![]() ![]() |
|
T. Dlotko
, Navier-Stokes equation and its fractional approximations, Appl. Math. Optim., 77 (2018)
, 99-128.
doi: 10.1007/s00245-016-9368-y.![]() ![]() ![]() |
|
M. El-Shahed
and A. Salem
, On the generalized Navier-Stokes equations, Appl. Math. Comput., 156 (2004)
, 287-293.
doi: 10.1016/j.amc.2003.07.022.![]() ![]() ![]() |
|
L. Ferreira
and E. Villamizar-Roa
, Fractional Navier-Stokes equations and a Hölder-type inequality in a sum of singular spaces, Nonlinear Anal., 74 (2011)
, 5618-5630.
doi: 10.1016/j.na.2011.05.047.![]() ![]() ![]() |
|
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy, 38. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-5364-8.![]() ![]() ![]() |
|
J. García-Luengo
, P. Marín-Rubio
and J. Real
, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Commun. Pure Appl. Anal., 14 (2015)
, 1603-1621.
doi: 10.3934/cpaa.2015.14.1603.![]() ![]() ![]() |
|
J. García-Luengo
, P. Marín-Rubio
and J. Real
, Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay, Discrete Contin. Dyn. Syst., 34 (2014)
, 181-201.
doi: 10.3934/dcds.2014.34.181.![]() ![]() ![]() |
|
J. García-Luengo
, P. Marín-Rubio
and J. Real
, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13 (2013)
, 331-357.
doi: 10.1515/ans-2013-0205.![]() ![]() ![]() |
|
M. J. Garrido-Atienza
and P. Marín-Rubio
, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006)
, 1100-1118.
doi: 10.1016/j.na.2005.05.057.![]() ![]() ![]() |
|
X. L. Guo
and Y. Y. Men
, On partial regularity of suitable weak solutions to the stationary fractional Navier-Stokes equations in dimension four and five, Acta Math. Sin. (Engl. Ser.), 33 (2017)
, 1632-1646.
doi: 10.1007/s10114-017-7125-z.![]() ![]() ![]() |
|
S. M. Guzzo
and G. Planas
, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete Contin. Dyn. Syst. Ser. B, 16 (2011)
, 225-238.
doi: 10.3934/dcdsb.2011.16.225.![]() ![]() ![]() |
|
Q. S. Jiu
and Y. Q. Wang
, On possible time singular points and eventual regularity of weak solutions to the fractional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014)
, 321-343.
doi: 10.4310/DPDE.2014.v11.n4.a2.![]() ![]() ![]() |
|
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, 2001.
doi: 10.1515/9783110870893.![]() ![]() ![]() |
|
T. Kato
, Strong $L_{p}$ -solutions of the Navier-Stokes equation in $\mathbb{R}^{m}$ , with applications to weak solution, Math. Z., 187 (1984)
, 471-480.
doi: 10.1007/BF01174182.![]() ![]() ![]() |
|
T. D. Ke
and D. Lan
, Global attractor for a class of functional differential inclusions with Hille-Yosida operators, Nonlinear Anal., 103 (2014)
, 72-86.
doi: 10.1016/j.na.2014.03.006.![]() ![]() ![]() |
|
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
|
P. E. Kloeden
, J. A. Langa
and J. Real
, Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 6 (2007)
, 937-955.
doi: 10.3934/cpaa.2007.6.937.![]() ![]() ![]() |
|
P. E. Kloeden
, P. Marín-Rubio
and J. Real
, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 8 (2009)
, 785-802.
doi: 10.3934/cpaa.2009.8.785.![]() ![]() ![]() |
|
P. E. Kloeden
and J. Valero
, The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations, Discrete Contin. Dyn. Syst., 28 (2010)
, 161-179.
doi: 10.3934/dcds.2010.28.161.![]() ![]() ![]() |
|
M. Li
, C. M. Huang
and F. Z. Jiang
, Galerkin finite element method for higher dimensional multi-term fractional diffusion equation on non-uniform meshes, Appl. Anal., 96 (2017)
, 1269-1284.
doi: 10.1080/00036811.2016.1186271.![]() ![]() ![]() |
|
X. C. Li
, X. Y. Yang
and Y. H. Zhang
, Error estimates of mixed finite element methods for time-fractional Navier-Stokes equations, J. Sci. Comput., 70 (2017)
, 500-515.
doi: 10.1007/s10915-016-0252-3.![]() ![]() ![]() |
|
F. Mainardi
, On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., 23 (1994)
, 246-251.
![]() ![]() |
|
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() ![]() |
|
P. Marín-Rubio
, J. Real
and J. Valero
, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011)
, 2012-2030.
doi: 10.1016/j.na.2010.11.008.![]() ![]() ![]() |
|
S. Momani
and Z. Odibat
, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006)
, 488-494.
doi: 10.1016/j.amc.2005.11.025.![]() ![]() ![]() |
|
C. J. Niche
and G. Planas
, Existence and decay of solutions in full space to Navier-Stokes equations with delays, Nonlinear Anal., 74 (2011)
, 244-256.
doi: 10.1016/j.na.2010.08.038.![]() ![]() ![]() |
|
L. Peng
, Y. Zhou
, B. Ahmad
and A. Alsaedi
, The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces, Chaos Solitons Fractals, 102 (2017)
, 218-228.
doi: 10.1016/j.chaos.2017.02.011.![]() ![]() ![]() |
|
I. Podlubny, Fractional Difierential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, 1999.
![]() ![]() |
|
H. Singh
, A new stable algorithm for fractional Navier-Stokes equation in polar coordinate, Int. J. Appl. Comput. Math., 3 (2017)
, 3705-3722.
doi: 10.1007/s40819-017-0323-7.![]() ![]() ![]() |
|
L. Tang and Y. Yu, Partial Hölder regularity of the steady fractional Navier-Stokes equations Calc. Var. Partial Differential Equations, 55 (2016), Art. 31, 18 pp.
doi: 10.1007/s00526-016-0967-x.![]() ![]() ![]() |
|
H. Y. Xu
, X. Y. Jiang
and B. Yu
, Numerical analysis of the space fractional Navier-Stokes equations, Appl. Math. Lett., 69 (2017)
, 94-100.
doi: 10.1016/j.aml.2017.02.006.![]() ![]() ![]() |
|
R. N. Wang
, D. H. Chen
and T. J. Xiao
, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012)
, 202-235.
doi: 10.1016/j.jde.2011.08.048.![]() ![]() ![]() |
|
F. B. Weissler
, The Navier-Stokes initial value problem in $L^p$, Arch. Ration. Mech. Anal., 74 (1980)
, 219-230.
doi: 10.1007/BF00280539.![]() ![]() ![]() |
|
Z. C. Zhai, Some Regularity Estimates for Mild Solutions to Fractional Heat-Type and Navier-Stokes Equations, Thesis (Ph.D.)-Memorial University of Newfoundland (Canada)., 2009.
![]() ![]() |
|
Y. Zhou
, L. Peng
, B. Ahmad
and A. Alsaedi
, Energy methods for fractional Navier-Stokes equations, Chaos Solitons Fractals, 102 (2017)
, 78-85.
doi: 10.1016/j.chaos.2017.03.053.![]() ![]() ![]() |
|
Y. Zhou
and L. Peng
, Weak solutions of the time-fractional Navier-Stokes equations and optimal control, Comput. Math. Appl., 73 (2017)
, 1016-1027.
doi: 10.1016/j.camwa.2016.07.007.![]() ![]() ![]() |
|
Y. Zhou
and L. Peng
, On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 73 (2017)
, 874-891.
doi: 10.1016/j.camwa.2016.03.026.![]() ![]() ![]() |