Convergence of particle systems to the Vlasov-Navier-Stokes equations is a difficult topic with only fragmentary results. Under a suitable modification of the classical Stokes drag force interaction, here a partial result in this direction is proven. A particle system is introduced, its interaction with the fluid is modelled and tightness is proved, in a suitable topology, for the family of laws of the pair composed by solution of Navier-Stokes equations and empirical measure of the particles. Moreover, it is proved that every limit law is supported on weak solutions of the Vlasov-Navier-Stokes system. Open problems, like weak-strong uniqueness for this system and its relevance for the convergence of the particle system, are outlined.
Citation: |
G. Allaire
, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes, Arch. Ration. Mech. Anal, 113 (1990)
, 209-259.
doi: 10.1007/BF00375065.![]() ![]() ![]() |
|
E. Bernard, L. Desvillettes, F. Golse and V. Ricci, A derivation of the Vlasov-Navier-Stokes model for aerosol flows from kinetic theory, Commun. Math. Sci., 15 (2017), 1703–1741, arXiv: 1608.00422.
doi: 10.4310/CMS.2017.v15.n6.a11.![]() ![]() ![]() |
|
L. Boudin
, L. Desvillettes
, C. Grandmont
and A. Moussa
, Global existence of solutions for the coupled vlasov and Navier-Stokes equations, Diff. Int. Eq., 22 (2009)
, 1247-1271.
![]() ![]() |
|
B. Desjardins
and M., J. Esteban
, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., 146 (1999)
, 59-71.
doi: 10.1007/s002050050136.![]() ![]() ![]() |
|
L. Desvillettes
, F. Golse
and V. Ricci
, The mean-field limit for solid particles in a Navier-Stokes flow, J. Stat. Phys., 131 (2008)
, 941-967.
doi: 10.1007/s10955-008-9521-3.![]() ![]() ![]() |
|
L. Desvillettes
and J. Mathiaud
, Some aspects of the asymptotics leading from gas-particles equations towards multiphase flows equations, J. Stat. Phys., 141 (2010)
, 120-141.
doi: 10.1007/s10955-010-0044-3.![]() ![]() ![]() |
|
E. Feireisl
, Y. Namlyeyeva
and Š. Nečasová
, Homogenization of the evolutionary Navier-Stokes system, Manuscr. Math., 149 (2016)
, 251-274.
doi: 10.1007/s00229-015-0778-y.![]() ![]() ![]() |
|
F. Flandoli, A fluid-particle system related to Vlasov-Navier-Stokes equations, to appear in Lecture Notes RIMS Kyoto, Ed. Y. Maekawa.
![]() |
|
D. Gérard-Varet
and M. Hillairet
, Regularity issues in the problem of fluid structure interaction, Arch. Ration. Mech. Anal., 195 (2010)
, 375-407.
doi: 10.1007/s00205-008-0202-9.![]() ![]() ![]() |
|
O. Glass, A. Munnier and F. Sueur, Point vortex dynamics as zero-radius limit of the motion of a rigid body in an irrotational fluid, preprint hal.inria.fr 2016.
![]() |
|
T. Goudon
, P.-E. Jabin
and A. Vasseur
, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Ⅰ. Light particles regime, Indiana Univ. Math. J., 53 (2004)
, 1495-1515.
doi: 10.1512/iumj.2004.53.2508.![]() ![]() ![]() |
|
T. Goudon
, P.-E. Jabin
and A. Vasseur
, Hydrodynamic limit for the Vlasov-Navier-Stokes equations.Ⅱ. Fine particles regime, Indiana Univ. Math. J., 53 (2004)
, 1517-1536.
doi: 10.1512/iumj.2004.53.2509.![]() ![]() ![]() |
|
P.-E. Jabin
and F. Otto
, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004)
, 415-432.
doi: 10.1007/s00220-004-1126-3.![]() ![]() ![]() |
|
C. Yu
, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013)
, 275-293.
doi: 10.1016/j.matpur.2013.01.001.![]() ![]() ![]() |