-
Previous Article
A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative
- DCDS-B Home
- This Issue
-
Next Article
Regularity of solutions to time fractional diffusion equations
Rate of attraction for a semilinear thermoelastic system with variable coefficients
Departamento de Matemática, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brasil |
$ \begin{cases} \partial_t^2u-\partial_x(a_\varepsilon(x) \partial_xu)+\partial_x(m(x) \theta) = f(u)& \mbox{in}\ \ (0,l)\times(0,+\infty),\\ \partial_t\theta-\partial_x(\kappa_\varepsilon(x) \partial_x\theta)+m(x) \partial_{xt}u = 0& \mbox{in}\ \ (0,l)\times(0,+\infty), \end{cases} $ |
$ l>0 $ |
$ a_\varepsilon,\kappa_\varepsilon $ |
$ m $ |
$ f $ |
$ \varepsilon\to0^+ $ |
$ \|a_\varepsilon-a_0\|_{L^p(0,l)}+\|\kappa_\varepsilon-\kappa_0\|_{L^p(0,l)} $ |
$ p\geq 2 $ |
References:
[1] |
F. D. Araruna and F. D. M. Bezerra,
Rate of attraction for a semilinear wave equation with variable coefficients and critical nonlinearities, Pacific J. Math., 266 (2013), 257-282.
doi: 10.2140/pjm.2013.266.257. |
[2] |
J. M. Arrieta, F. D. M. Bezerra and A. N. Carvalho,
Rate of convergence of global attractors of some perturbed reaction-diffusion problems, Topological Methods in Nonlinear Analysis, 41 (2013), 229-253.
|
[3] |
J. M. Arrieta and A. N. Carvalho,
Abstract parabolic equations with critical nonlinearities and applications to Navier-Stokes and heat equations, Transactions of the AMS, 352 (2000), 285-310.
doi: 10.1090/S0002-9947-99-02528-3. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dummbell domains Ⅲ. Continuity of attractors, J. Diff. Eqns., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta and E. Santamaría,
Estimates on the distance of inertial manifolds, Discrete Contin. Dyn. Syst., 34 (2014), 3921-3944.
doi: 10.3934/dcds.2014.34.3921. |
[6] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and Its Applications, 25, New York, 1992. |
[7] |
A. V. Babin and M. I. Vishik,
Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.
|
[8] |
F. D. M. Bezerra and M. J. D. Nascimento,
Convergence estimates of the dynamics of a hyperbolic system with variable coefficients, Math. Methods Appl. Sci., 37 (2014), 663-675.
doi: 10.1002/mma.2823. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[10] |
S. M. Bruschi, A. N. Carvalho, J. W. Cholewa and T. Dlotko,
Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. D. Diff. Eqns., 18 (2006), 767-814.
doi: 10.1007/s10884-006-9023-4. |
[11] |
V. L. Carbone, A. N. Carvalho and K. Schiabel-Silva,
Continuity of attractors for parabolic problems with localized large diffusion, Nonlinear Analysis, 68 (2008), 515-535.
doi: 10.1016/j.na.2006.11.017. |
[12] |
V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva,
Pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, 77 (2011), 1-13.
|
[13] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer-Verlag, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[14] |
A. N. Carvalho and S. Piskarev,
A general approximation scheme for attractors of abstract parabolic problems, Numerical Functional Analysis and Optimization, 27 (2006), 785-829.
doi: 10.1080/01630560600882723. |
[15] |
H. Gao,
Global attractor for the semilinear thermoelastic problem, Math. Methods Appl. Sci., 26 (2003), 1255-1271.
doi: 10.1002/mma.416. |
[16] |
H. Gao and J. E. Muñoz Rivera,
Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68.
doi: 10.1016/S0022-0396(02)00016-5. |
[17] |
J. K. Hale and A. Perissinotto,
Global attractor and convergence for one-dimensional semilinear thermoelasticity, Dynamic Systems and Applications, 2 (1993), 1-9.
|
[18] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, 840 New York, 1981. |
[19] |
D. B. Henry, A. Perissinitto and O. Lopes,
On the essential spectrum of a semigroup of thermoelasticity, Applications, 21 (1993), 65-75.
doi: 10.1016/0362-546X(93)90178-U. |
[20] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, 1978. |
show all references
References:
[1] |
F. D. Araruna and F. D. M. Bezerra,
Rate of attraction for a semilinear wave equation with variable coefficients and critical nonlinearities, Pacific J. Math., 266 (2013), 257-282.
doi: 10.2140/pjm.2013.266.257. |
[2] |
J. M. Arrieta, F. D. M. Bezerra and A. N. Carvalho,
Rate of convergence of global attractors of some perturbed reaction-diffusion problems, Topological Methods in Nonlinear Analysis, 41 (2013), 229-253.
|
[3] |
J. M. Arrieta and A. N. Carvalho,
Abstract parabolic equations with critical nonlinearities and applications to Navier-Stokes and heat equations, Transactions of the AMS, 352 (2000), 285-310.
doi: 10.1090/S0002-9947-99-02528-3. |
[4] |
J. M. Arrieta, A. N. Carvalho and G. Lozada-Cruz,
Dynamics in dummbell domains Ⅲ. Continuity of attractors, J. Diff. Eqns., 247 (2009), 225-259.
doi: 10.1016/j.jde.2008.12.014. |
[5] |
J. M. Arrieta and E. Santamaría,
Estimates on the distance of inertial manifolds, Discrete Contin. Dyn. Syst., 34 (2014), 3921-3944.
doi: 10.3934/dcds.2014.34.3921. |
[6] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and Its Applications, 25, New York, 1992. |
[7] |
A. V. Babin and M. I. Vishik,
Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491.
|
[8] |
F. D. M. Bezerra and M. J. D. Nascimento,
Convergence estimates of the dynamics of a hyperbolic system with variable coefficients, Math. Methods Appl. Sci., 37 (2014), 663-675.
doi: 10.1002/mma.2823. |
[9] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. |
[10] |
S. M. Bruschi, A. N. Carvalho, J. W. Cholewa and T. Dlotko,
Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations, J. D. Diff. Eqns., 18 (2006), 767-814.
doi: 10.1007/s10884-006-9023-4. |
[11] |
V. L. Carbone, A. N. Carvalho and K. Schiabel-Silva,
Continuity of attractors for parabolic problems with localized large diffusion, Nonlinear Analysis, 68 (2008), 515-535.
doi: 10.1016/j.na.2006.11.017. |
[12] |
V. L. Carbone, M. J. D. Nascimento, K. Schiabel-Silva and R. P. Silva,
Pullback attractors for a singularly nonautonomous plate equation, Electronic Journal of Differential Equations, 77 (2011), 1-13.
|
[13] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer-Verlag, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[14] |
A. N. Carvalho and S. Piskarev,
A general approximation scheme for attractors of abstract parabolic problems, Numerical Functional Analysis and Optimization, 27 (2006), 785-829.
doi: 10.1080/01630560600882723. |
[15] |
H. Gao,
Global attractor for the semilinear thermoelastic problem, Math. Methods Appl. Sci., 26 (2003), 1255-1271.
doi: 10.1002/mma.416. |
[16] |
H. Gao and J. E. Muñoz Rivera,
Global existence and decay for the semilinear thermoelastic contact problem, J. Differential Equations, 186 (2002), 52-68.
doi: 10.1016/S0022-0396(02)00016-5. |
[17] |
J. K. Hale and A. Perissinotto,
Global attractor and convergence for one-dimensional semilinear thermoelasticity, Dynamic Systems and Applications, 2 (1993), 1-9.
|
[18] |
D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, 840 New York, 1981. |
[19] |
D. B. Henry, A. Perissinitto and O. Lopes,
On the essential spectrum of a semigroup of thermoelasticity, Applications, 21 (1993), 65-75.
doi: 10.1016/0362-546X(93)90178-U. |
[20] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, 1978. |
[1] |
V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481 |
[2] |
Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557 |
[3] |
Yuming Qin, Xinguang Yang, Zhiyong Ma. Global existence of solutions for the thermoelastic Bresse system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1395-1406. doi: 10.3934/cpaa.2014.13.1395 |
[4] |
Zhuangyi Liu, Ramón Quintanilla. Energy decay rate of a mixed type II and type III thermoelastic system. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1433-1444. doi: 10.3934/dcdsb.2010.14.1433 |
[5] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[6] |
Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 |
[7] |
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 |
[8] |
Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816 |
[9] |
Irena Lasiecka, Mathias Wilke. Maximal regularity and global existence of solutions to a quasilinear thermoelastic plate system. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5189-5202. doi: 10.3934/dcds.2013.33.5189 |
[10] |
Zigen Ouyang, Chunhua Ou. Global stability and convergence rate of traveling waves for a nonlocal model in periodic media. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 993-1007. doi: 10.3934/dcdsb.2012.17.993 |
[11] |
Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243 |
[12] |
Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61 |
[13] |
Angelo Morro. Nonlinear waves in thermoelastic dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 149-162. doi: 10.3934/eect.2019009 |
[14] |
John R. Tucker. Attractors and kernels: Linking nonlinear PDE semigroups to harmonic analysis state-space decomposition. Conference Publications, 2001, 2001 (Special) : 366-370. doi: 10.3934/proc.2001.2001.366 |
[15] |
Robert Denk, Yoshihiro Shibata. Generation of semigroups for the thermoelastic plate equation with free boundary conditions. Evolution Equations and Control Theory, 2019, 8 (2) : 301-313. doi: 10.3934/eect.2019016 |
[16] |
Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021 |
[17] |
Qin Pan, Jicai Huang, Qihua Huang. Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021195 |
[18] |
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735 |
[19] |
Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195 |
[20] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]