July  2019, 24(7): 3265-3280. doi: 10.3934/dcdsb.2018319

Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $

Department of Applied Mathematics, Donghua University, Shanghai, China

* Corresponding author: Caixuan Ren

Received  November 2017 Published  July 2019 Early access  January 2019

Fund Project: Du is supported by Fundamental Research Funds for the Central Universities (No. 2232016D3-32), Natural Science Foundation of Shanghai (No. 18ZR1401300) and partly by National Natural Science Foundation of China (No. 11671075). Ren is supported by NSFC(No. 11601075) and the Fundamental Research Funds for the Central Universities (No.16D110910).

In this paper, the asymptotic wave behavior of the solution for the nonlinear damped wave equation in $ \mathbb{R}^n_+ $ is investigated. We describe the double mechanism of the hyperbolic effect and the parabolic effect using the explicit functions. With the absorbing and radiative boundary condition, we show that the Green's function for the half space linear problem can be described in terms of the fundamental solution for the Cauchy problem and the reflected fundamental solution coupled with a boundary operator. Using the Duhamel's principle, we see that due to the fast decay property of the Green's function and the high nonlinearity, the pointwise decaying rate for the nonlinear solution and extra time decaying rate for its first order derivative are obtained.

Citation: Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319
References:
[1]

S. J. DengW. K. Wang and S. H. Yu, Green's functions of wave equations in $R^n_+ \times R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.  doi: 10.1007/s00205-014-0821-2.

[2]

S. J. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.  doi: 10.1016/j.na.2016.05.009.

[3]

S. J. Deng and S. H. Yu, Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.  doi: 10.1090/qam/1461.

[4]

L. L. Du, Characteristic half space problem for the Broadwell model, Netw. Heterog. Media, 9 (2014), 97-110.  doi: 10.3934/nhm.2014.9.97.

[5]

L. L. Du and H. T. Wang, Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), 1349-1363.  doi: 10.3934/dcds.2018055.

[6]

L. FanH. Liu and H. Yin, Decay estimates of planar stationary wavs for damped wave equations with nonlinear convection in multi-dimensional half space, Acta Mathematica Scientia, 31 (2011), 1389-1410.  doi: 10.1016/S0252-9602(11)60326-3.

[7]

R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in $R^N$, J. Math. Anal. Appl., 269 (2002), 87-97.  doi: 10.1016/S0022-247X(02)00021-5.

[8]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.  doi: 10.1007/s00205-005-0365-6.

[9]

C. Y. LanH. E. Lin and S. H. Yu, The Green's function for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294.  doi: 10.1142/S0219891608001489.

[10]

T. P. Liu and S. H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.  doi: 10.1002/cpa.20172.

[11]

T. P. Liu and S. H. Yu, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006), 1-78. 

[12]

P. Marcatia and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.  doi: 10.1016/S0022-0396(03)00026-3.

[13]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave quations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189.  doi: 10.2977/prims/1195190962.

[14]

T. Narazaki, $L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.  doi: 10.2969/jmsj/1191418647.

[15]

K. Nishihara, $L^p-L^q$ estimates for solutions to the damped wave equations in 3-dimensional space and their applications, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.

[16]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[17]

Y. UedaT. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.  doi: 10.3934/krm.2008.1.49.

[18]

Y. UedaT. Nakamura and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762.  doi: 10.1007/s00205-010-0369-8.

[19]

Y. UedaT. Nakamura and S. Kawashima, Energy method in the partial Fourier space and application to stability problems in the half space, J. Differ. Equ., 250 (2011), 1169-1199.  doi: 10.1016/j.jde.2010.10.003.

show all references

References:
[1]

S. J. DengW. K. Wang and S. H. Yu, Green's functions of wave equations in $R^n_+ \times R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.  doi: 10.1007/s00205-014-0821-2.

[2]

S. J. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.  doi: 10.1016/j.na.2016.05.009.

[3]

S. J. Deng and S. H. Yu, Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.  doi: 10.1090/qam/1461.

[4]

L. L. Du, Characteristic half space problem for the Broadwell model, Netw. Heterog. Media, 9 (2014), 97-110.  doi: 10.3934/nhm.2014.9.97.

[5]

L. L. Du and H. T. Wang, Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), 1349-1363.  doi: 10.3934/dcds.2018055.

[6]

L. FanH. Liu and H. Yin, Decay estimates of planar stationary wavs for damped wave equations with nonlinear convection in multi-dimensional half space, Acta Mathematica Scientia, 31 (2011), 1389-1410.  doi: 10.1016/S0252-9602(11)60326-3.

[7]

R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in $R^N$, J. Math. Anal. Appl., 269 (2002), 87-97.  doi: 10.1016/S0022-247X(02)00021-5.

[8]

Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.  doi: 10.1007/s00205-005-0365-6.

[9]

C. Y. LanH. E. Lin and S. H. Yu, The Green's function for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294.  doi: 10.1142/S0219891608001489.

[10]

T. P. Liu and S. H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.  doi: 10.1002/cpa.20172.

[11]

T. P. Liu and S. H. Yu, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006), 1-78. 

[12]

P. Marcatia and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.  doi: 10.1016/S0022-0396(03)00026-3.

[13]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave quations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189.  doi: 10.2977/prims/1195190962.

[14]

T. Narazaki, $L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.  doi: 10.2969/jmsj/1191418647.

[15]

K. Nishihara, $L^p-L^q$ estimates for solutions to the damped wave equations in 3-dimensional space and their applications, Math. Z., 244 (2003), 631-649.  doi: 10.1007/s00209-003-0516-0.

[16]

G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489.  doi: 10.1006/jdeq.2000.3933.

[17]

Y. UedaT. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.  doi: 10.3934/krm.2008.1.49.

[18]

Y. UedaT. Nakamura and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762.  doi: 10.1007/s00205-010-0369-8.

[19]

Y. UedaT. Nakamura and S. Kawashima, Energy method in the partial Fourier space and application to stability problems in the half space, J. Differ. Equ., 250 (2011), 1169-1199.  doi: 10.1016/j.jde.2010.10.003.

[1]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019

[2]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[3]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[4]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[5]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[6]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[7]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[8]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[9]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[10]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[11]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[12]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[13]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[14]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[15]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[16]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[17]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[18]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[19]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[20]

Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022111

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (251)
  • HTML views (445)
  • Cited by (0)

Other articles
by authors

[Back to Top]