In this paper, the asymptotic wave behavior of the solution for the nonlinear damped wave equation in $ \mathbb{R}^n_+ $ is investigated. We describe the double mechanism of the hyperbolic effect and the parabolic effect using the explicit functions. With the absorbing and radiative boundary condition, we show that the Green's function for the half space linear problem can be described in terms of the fundamental solution for the Cauchy problem and the reflected fundamental solution coupled with a boundary operator. Using the Duhamel's principle, we see that due to the fast decay property of the Green's function and the high nonlinearity, the pointwise decaying rate for the nonlinear solution and extra time decaying rate for its first order derivative are obtained.
Citation: |
[1] |
S. J. Deng, W. K. Wang and S. H. Yu, Green's functions of wave equations in $R^n_+ \times R_+$, Arch. Ration. Mech. Anal., 216 (2015), 881-903.
doi: 10.1007/s00205-014-0821-2.![]() ![]() ![]() |
[2] |
S. J. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal., 143 (2016), 193-210.
doi: 10.1016/j.na.2016.05.009.![]() ![]() |
[3] |
S. J. Deng and S. H. Yu, Green's function and pointwise convergence for compressible Navier-Stokes equations, Quart. Appl. Math., 75 (2017), 433-503.
doi: 10.1090/qam/1461.![]() ![]() ![]() |
[4] |
L. L. Du, Characteristic half space problem for the Broadwell model, Netw. Heterog. Media, 9 (2014), 97-110.
doi: 10.3934/nhm.2014.9.97.![]() ![]() ![]() |
[5] |
L. L. Du and H. T. Wang, Long time wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst., 38 (2018), 1349-1363.
doi: 10.3934/dcds.2018055.![]() ![]() ![]() |
[6] |
L. Fan, H. Liu and H. Yin, Decay estimates of planar stationary wavs for damped wave equations with nonlinear convection in multi-dimensional half space, Acta Mathematica Scientia, 31 (2011), 1389-1410.
doi: 10.1016/S0252-9602(11)60326-3.![]() ![]() ![]() |
[7] |
R. Ikehata and M. Ohta, Critical exponents for semilinear dissipative wave equations in $R^N$, J. Math. Anal. Appl., 269 (2002), 87-97.
doi: 10.1016/S0022-247X(02)00021-5.![]() ![]() ![]() |
[8] |
Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the Compressible Navier-Stokes Equations on the half space, Arch. Ration. Mech. Anal., 177 (2005), 231-330.
doi: 10.1007/s00205-005-0365-6.![]() ![]() ![]() |
[9] |
C. Y. Lan, H. E. Lin and S. H. Yu, The Green's function for the Broadwell model with a transonic boundary, J. Hyperbolic Differ. Equ., 5 (2008), 279-294.
doi: 10.1142/S0219891608001489.![]() ![]() ![]() |
[10] |
T. P. Liu and S. H. Yu, Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation, Commun. Pure Appl. Math., 60 (2007), 295-356.
doi: 10.1002/cpa.20172.![]() ![]() ![]() |
[11] |
T. P. Liu and S. H. Yu, Green's function of Boltzmann equation, 3-D waves, Bullet. Inst. of Math. Academia Sinica, 1 (2006), 1-78.
![]() ![]() |
[12] |
P. Marcatia and K. Nishihara, The $L^p-L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media, J. Differ. Equ., 191 (2003), 445-469.
doi: 10.1016/S0022-0396(03)00026-3.![]() ![]() ![]() |
[13] |
A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave quations, Publ. Res. Inst. Math. Sci., 12 (1976), 169-189.
doi: 10.2977/prims/1195190962.![]() ![]() ![]() |
[14] |
T. Narazaki, $L^p-L^q$ estimates for damped wave equations and their applications to semilinear problem, J. Math. Soc. Japan, 56 (2004), 586-626.
doi: 10.2969/jmsj/1191418647.![]() ![]() ![]() |
[15] |
K. Nishihara, $L^p-L^q$ estimates for solutions to the damped wave equations in 3-dimensional space and their applications, Math. Z., 244 (2003), 631-649.
doi: 10.1007/s00209-003-0516-0.![]() ![]() ![]() |
[16] |
G. Todorova and B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933.![]() ![]() ![]() |
[17] |
Y. Ueda, T. Nakamura and S. Kawashima, Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space, Kinet. Relat. Models, 1 (2008), 49-64.
doi: 10.3934/krm.2008.1.49.![]() ![]() ![]() |
[18] |
Y. Ueda, T. Nakamura and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762.
doi: 10.1007/s00205-010-0369-8.![]() ![]() ![]() |
[19] |
Y. Ueda, T. Nakamura and S. Kawashima, Energy method in the partial Fourier space and application to stability problems in the half space, J. Differ. Equ., 250 (2011), 1169-1199.
doi: 10.1016/j.jde.2010.10.003.![]() ![]() ![]() |