July  2019, 24(7): 3299-3318. doi: 10.3934/dcdsb.2018321

Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients

Department of Probability and Statistics, School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, MO 510006, China

* Corresponding author: Jiaowan Luo

Received  February 2018 Revised  July 2018 Published  January 2019

Fund Project: The second author is supported by NNSF grant 11271093.

In this paper, by the use of martingale property and spectral decomposition theory, we investigate the stochastic invariance for neutral stochastic functional differential equations (NSFDEs) and provide necessary and sufficient conditions for the invariance of closed sets of $ R^{d} $ with non-Lipschitz coefficients. A pathwise asymptotic estimate example is given to illustrate the feasibility and effectiveness of obtained result.

Citation: Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321
References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, in MPS-SIAM Series on Optimization: SIAM and MPS, Philadelphia, 1nd edition, the Society for Industrial and Applied Mathematics and the Mathematical Programming Society, 2006.  Google Scholar

[2]

J. C. A. Barata and M. S. Hussein, The Moore-Penrose Pseudoinverse: a tutorial review of the theory, Brazilian Journal of Physics, 42 (2012), 146-165.   Google Scholar

[3] F. Baudouin, An Introduction to the Geometry of Stochastic Flows, 1 edition, Imperial College Press, London, 2004.  doi: 10.1142/9781860947261.  Google Scholar
[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1978.   Google Scholar
[5]

R. BuckdahnM. Quincampoix and C. Rainer, Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems, Bulletin Des Sciences Mathmatiques, 134 (2010), 207-214.  doi: 10.1016/j.bulsci.2007.11.003.  Google Scholar

[6]

H. Cartan, Calcul différentiel, Hermann Paris, 15 (1967), 287-290.   Google Scholar

[7]

B. P. CheriditoH. M. Soner and N. Touzi, Small time path behavior of double stochastic integrals and applications to stochastic contral, The Annals of Applied Probability, 15 (2005), 2475-2495.  doi: 10.1214/105051605000000557.  Google Scholar

[8]

I. Chueshov and M. Scheutzow, Invariance and monotonicity for stochastic delay differential equations, Discrete and Continuous Dynamical Systems - Series B, 18 (2012), 1533-1554.  doi: 10.3934/dcdsb.2013.18.1533.  Google Scholar

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, 1st edition, John Wiley and Sons, New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[10]

E. Faou and T. Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis, Mathematics of Computation, 78 (2009), 2047-2074.  doi: 10.1090/S0025-5718-09-02220-0.  Google Scholar

[11]

E. Forgoston, L. Billings and P. Yecko, Set-based corral control in stochastic dynamical systems: making almost invariant sets more invariant, Chaos, 21 (2011), 013116, 11pp. doi: 10.1063/1.3539836.  Google Scholar

[12]

A. Friedman, Stochastic Differential Equations and Applications, Dover Publications, Inc., Mineola, NY, 2006.  Google Scholar

[13]

E. A. Jaber, B. Bouchard and C. Illand, Stochastic invariance of closed sets with non-Lipschitz coefficients, Electron. Commun. Probab., 22 (2017), Paper No. 53, 15 pp, arXiv: 1607.08717, 2016. doi: 10.1214/17-ECP88.  Google Scholar

[14] F. C. Klebaner, Introduction to Stochastic Calculus With Applications, 2 edition, Imperial College Press, London, 2005.  doi: 10.1142/p386.  Google Scholar
[15]

Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic diferential inclusions with infinite delay, Stochastic Analysis and Applications, 25 (2007), 397-415.  doi: 10.1080/07362990601139610.  Google Scholar

[16]

D. S. Li and D. Y. Xu, Attracting and quasi-invariant sets of stochastic neutral partial functional differential equations, Acta Mathematica Scientia, 33 (2013), 578-588.  doi: 10.1016/S0252-9602(13)60021-1.  Google Scholar

[17]

Z. Li, Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by FBM, Neurocomputing, 177 (2016), 620-627.   Google Scholar

[18]

R. Lorenz, Weak approximation of stochastic delay differential equations with bounded memory by discrete time series, Solid State Communications, 65 (1988), 55-58.   Google Scholar

[19]

J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons, Ltd., Chichester, 1988.  Google Scholar

[20]

X. R. Mao, Stochastic Differential Equations and Application, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[21]

S. E. A. Mohammed, Stochastic Functional Differential Equations, 1st edition, Pitman Advanced Publishing Program, 1984.  Google Scholar

[22]

G. D. Prato and H. Frankowska, Invariance of stochastic control systems with deterministic arguments, Journal of Differential Equations, 200 (2004), 18-52.  doi: 10.1016/j.jde.2004.01.007.  Google Scholar

[23]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. Google Scholar

[24]

T. Stefan, Invariance of closed convex cones for stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 451 (2017), 1077-1122.  doi: 10.1016/j.jmaa.2017.02.044.  Google Scholar

[25]

G. Thoma Kurtz, Lectures on Stochastic Analysis, University of Wisconsin - Madison Madison, 2007. Google Scholar

[26]

L. WangZ. Wang and J. Wu, Positively invariant sets, monotone solutions, and contracting rectangles in neutral functional-differential equations, Functional Differential Equations, 7 (2000), 385-397.   Google Scholar

[27]

J. Zabczyk, Stochastic invariance and consistency of financial models, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 (2000), 67-80.   Google Scholar

show all references

References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces, in MPS-SIAM Series on Optimization: SIAM and MPS, Philadelphia, 1nd edition, the Society for Industrial and Applied Mathematics and the Mathematical Programming Society, 2006.  Google Scholar

[2]

J. C. A. Barata and M. S. Hussein, The Moore-Penrose Pseudoinverse: a tutorial review of the theory, Brazilian Journal of Physics, 42 (2012), 146-165.   Google Scholar

[3] F. Baudouin, An Introduction to the Geometry of Stochastic Flows, 1 edition, Imperial College Press, London, 2004.  doi: 10.1142/9781860947261.  Google Scholar
[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete Time Case, Academic Press, New York, 1978.   Google Scholar
[5]

R. BuckdahnM. Quincampoix and C. Rainer, Another proof for the equivalence between invariance of closed sets with respect to stochastic and deterministic systems, Bulletin Des Sciences Mathmatiques, 134 (2010), 207-214.  doi: 10.1016/j.bulsci.2007.11.003.  Google Scholar

[6]

H. Cartan, Calcul différentiel, Hermann Paris, 15 (1967), 287-290.   Google Scholar

[7]

B. P. CheriditoH. M. Soner and N. Touzi, Small time path behavior of double stochastic integrals and applications to stochastic contral, The Annals of Applied Probability, 15 (2005), 2475-2495.  doi: 10.1214/105051605000000557.  Google Scholar

[8]

I. Chueshov and M. Scheutzow, Invariance and monotonicity for stochastic delay differential equations, Discrete and Continuous Dynamical Systems - Series B, 18 (2012), 1533-1554.  doi: 10.3934/dcdsb.2013.18.1533.  Google Scholar

[9]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, 1st edition, John Wiley and Sons, New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[10]

E. Faou and T. Lelièvre, Conservative stochastic differential equations: Mathematical and numerical analysis, Mathematics of Computation, 78 (2009), 2047-2074.  doi: 10.1090/S0025-5718-09-02220-0.  Google Scholar

[11]

E. Forgoston, L. Billings and P. Yecko, Set-based corral control in stochastic dynamical systems: making almost invariant sets more invariant, Chaos, 21 (2011), 013116, 11pp. doi: 10.1063/1.3539836.  Google Scholar

[12]

A. Friedman, Stochastic Differential Equations and Applications, Dover Publications, Inc., Mineola, NY, 2006.  Google Scholar

[13]

E. A. Jaber, B. Bouchard and C. Illand, Stochastic invariance of closed sets with non-Lipschitz coefficients, Electron. Commun. Probab., 22 (2017), Paper No. 53, 15 pp, arXiv: 1607.08717, 2016. doi: 10.1214/17-ECP88.  Google Scholar

[14] F. C. Klebaner, Introduction to Stochastic Calculus With Applications, 2 edition, Imperial College Press, London, 2005.  doi: 10.1142/p386.  Google Scholar
[15]

Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic diferential inclusions with infinite delay, Stochastic Analysis and Applications, 25 (2007), 397-415.  doi: 10.1080/07362990601139610.  Google Scholar

[16]

D. S. Li and D. Y. Xu, Attracting and quasi-invariant sets of stochastic neutral partial functional differential equations, Acta Mathematica Scientia, 33 (2013), 578-588.  doi: 10.1016/S0252-9602(13)60021-1.  Google Scholar

[17]

Z. Li, Global attractiveness and quasi-invariant sets of impulsive neutral stochastic functional differential equations driven by FBM, Neurocomputing, 177 (2016), 620-627.   Google Scholar

[18]

R. Lorenz, Weak approximation of stochastic delay differential equations with bounded memory by discrete time series, Solid State Communications, 65 (1988), 55-58.   Google Scholar

[19]

J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, John Wiley & Sons, Ltd., Chichester, 1988.  Google Scholar

[20]

X. R. Mao, Stochastic Differential Equations and Application, Second edition. Horwood Publishing Limited, Chichester, 2008. doi: 10.1533/9780857099402.  Google Scholar

[21]

S. E. A. Mohammed, Stochastic Functional Differential Equations, 1st edition, Pitman Advanced Publishing Program, 1984.  Google Scholar

[22]

G. D. Prato and H. Frankowska, Invariance of stochastic control systems with deterministic arguments, Journal of Differential Equations, 200 (2004), 18-52.  doi: 10.1016/j.jde.2004.01.007.  Google Scholar

[23]

R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998. Google Scholar

[24]

T. Stefan, Invariance of closed convex cones for stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 451 (2017), 1077-1122.  doi: 10.1016/j.jmaa.2017.02.044.  Google Scholar

[25]

G. Thoma Kurtz, Lectures on Stochastic Analysis, University of Wisconsin - Madison Madison, 2007. Google Scholar

[26]

L. WangZ. Wang and J. Wu, Positively invariant sets, monotone solutions, and contracting rectangles in neutral functional-differential equations, Functional Differential Equations, 7 (2000), 385-397.   Google Scholar

[27]

J. Zabczyk, Stochastic invariance and consistency of financial models, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 11 (2000), 67-80.   Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[5]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[6]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[7]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[9]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[10]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[11]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[12]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[13]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[14]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[15]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[16]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[17]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[18]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[19]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[20]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (1612)
  • HTML views (501)
  • Cited by (0)

Other articles
by authors

[Back to Top]