# American Institute of Mathematical Sciences

• Previous Article
Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation
• DCDS-B Home
• This Issue
• Next Article
Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients
July  2019, 24(7): 3319-3334. doi: 10.3934/dcdsb.2018322

## On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators

 1 Department of Mathematics, Institute of Applied Mathematical Sciences and National Center for Theoretical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan 2 Department of Mathematical Sciences, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

Received  February 2018 Revised  August 2018 Published  January 2019

We investigate the collective behavior of synchrony for the Kuramoto and Winfree models. We first prove the global convergence of frequency synchronization for the non-identical Kuramoto system of three oscillators. It is shown that the uniform boundedness of the diameter of the phase functions implies complete frequency synchronization. In light of this, we show, under a suitable condition on the coupling strength and deviation of the intrinsic frequencies, that the diameter function of the phases is uniformly bounded. In a similar spirit, we also prove the global convergence of phase-locked synchronization for the Winfree model of $N$ oscillators for $N\ge2$.

Citation: Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322
##### References:

show all references

##### References:
The Kuramoto model (1.1) with $N = 3$, $K = 1$, $D(\Omega)/K = 1.23691$
The Kuramoto model (1.1) with $N = 3$, $K = 1$, $D(\Omega)/K = 0.0201916$. The plots are in log scale in $t$
The Winfree model (3.1) with $N = 5$, $\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}} = 1.15405$ where the matrix $K = K_1$ is given in (4.2). The plots are in log scale in $t$
The Winfree model (3.1) with $N = 5$, $K =$, $\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}} = 13.8456$ where the matrix $K = K_2$ is given in (4.2)
Parameters for Kuramoto model experimented in Table 3. The notation $U(a, b)$ is a uniform random distribution over $[a, b]$
 Case $N$ $K$ $\Omega$ $D(\Omega)/K$ $\Theta(0)$ (Ⅰ) $3$ $1$ $\{-0.1, 0.1, 0.0\}$ $0.2$ $\{1.5, -1.7, 2.1\}$ (Ⅱ) $5$ $2$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $1$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$ (Ⅲ) $20$ $1$ $U(-0.123, 0.123)$ $0.214915$ $U(-\pi, \pi)$ (Ⅰ)' $3$ $1$ $\{-0.6, 0.9, 0.5\}$ $1.5$ $\{-3.0, -0.7, -2.0\}$ (Ⅱ)' $5$ $1$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $2$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$ (Ⅲ)' $20$ $1.5$ $U(-1.23, 1.23)$ $1.59328$ $U(-\pi, \pi)$
 Case $N$ $K$ $\Omega$ $D(\Omega)/K$ $\Theta(0)$ (Ⅰ) $3$ $1$ $\{-0.1, 0.1, 0.0\}$ $0.2$ $\{1.5, -1.7, 2.1\}$ (Ⅱ) $5$ $2$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $1$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$ (Ⅲ) $20$ $1$ $U(-0.123, 0.123)$ $0.214915$ $U(-\pi, \pi)$ (Ⅰ)' $3$ $1$ $\{-0.6, 0.9, 0.5\}$ $1.5$ $\{-3.0, -0.7, -2.0\}$ (Ⅱ)' $5$ $1$ $\{0.9, 0.1, -1.1, -0.9, 0.0\}$ $2$ $\{-1.4, 2.3, -1.8, 0.5, -2.4\}$ (Ⅲ)' $20$ $1.5$ $U(-1.23, 1.23)$ $1.59328$ $U(-\pi, \pi)$
The Kuramoto phases $\Theta(t)$ and the modulus of the order parameter, $|r|$, given in (4.1)
 $t$ (Ⅰ) (Ⅱ) (Ⅲ) (Ⅰ)' (Ⅱ)' (Ⅲ)' $0$ $D(\Theta(t))$ 3.80000 4.70000 4.60170 2.30000 4.70000 5.67130 $D(\dot{\Theta}(t))$ 0.23108 1.93260 0.67878 0.61164 1.88670 2.41560 $|r|$ 0.34515 0.30511 0.27291 0.60397 0.30511 0.03716 $5$ $D(\Theta(t))$ 6.05170 6.96100 0.48507 7.56320 8.10750 13.97020 $D(\dot{\Theta}(t))$ 0.15616 0.00375 0.41549 0.57795 1.22680 3.03850 $|r|$ 0.98882 0.91498 0.99269 0.86806 0.75848 0.72047 $20$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 20.38000 28.04320 22.71800 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.38512 1.01360 0.94404 $|r|$ 0.99664 0.91483 0.99814 0.80857 0.61695 0.60180 $150$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 133.80190 228.90490 128.11660 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.36309 0.83900 2.09790 $|r|$ 0.99664 0.91483 0.99814 0.72070 0.60348 0.76208 $500$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 441.10500 782.61200 405.01650 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.49383 1.24770 0.46759 $|r|$ 0.99664 0.91483 0.99814 0.86642 0.40841 0.68921
 $t$ (Ⅰ) (Ⅱ) (Ⅲ) (Ⅰ)' (Ⅱ)' (Ⅲ)' $0$ $D(\Theta(t))$ 3.80000 4.70000 4.60170 2.30000 4.70000 5.67130 $D(\dot{\Theta}(t))$ 0.23108 1.93260 0.67878 0.61164 1.88670 2.41560 $|r|$ 0.34515 0.30511 0.27291 0.60397 0.30511 0.03716 $5$ $D(\Theta(t))$ 6.05170 6.96100 0.48507 7.56320 8.10750 13.97020 $D(\dot{\Theta}(t))$ 0.15616 0.00375 0.41549 0.57795 1.22680 3.03850 $|r|$ 0.98882 0.91498 0.99269 0.86806 0.75848 0.72047 $20$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 20.38000 28.04320 22.71800 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.38512 1.01360 0.94404 $|r|$ 0.99664 0.91483 0.99814 0.80857 0.61695 0.60180 $150$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 133.80190 228.90490 128.11660 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.36309 0.83900 2.09790 $|r|$ 0.99664 0.91483 0.99814 0.72070 0.60348 0.76208 $500$ $D(\Theta(t))$ 6.18270 6.96220 0.21578 441.10500 782.61200 405.01650 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 0.49383 1.24770 0.46759 $|r|$ 0.99664 0.91483 0.99814 0.86642 0.40841 0.68921
Parameters for Winfree model experimented in Table 4. The upper triangular entries of matrices $K_i$, $i = 3, \cdots, 8$ are generated from a uniform random distribution over $[0.5, 1.0]$ and the lower triangular entries by a symmetry. $U(a, b)$ denotes a uniform random distribution over $[a, b]$.
 Case $N$ $K$ $\Omega$ $\displaystyle\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}}$ $\Theta(0)$ (Ⅰ) $3$ $K_3$ $\{1.7, 1.1, -1.7\}$ $2.56732$ $\{-0.9, 2.7, -3.0\}$ (Ⅱ) $5$ $K_4$ $\{-1.1, -1.7, 0.9, 1.4, -0.4\}$ $2.52008$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$ (Ⅲ) $20$ $K_5$ $U(-28, 28)$ $37.4299$ $U(-\pi, \pi)$ (Ⅰ)' $3$ $K_6$ $\{5.0, 2.1, -3.7\}$ $7.01639$ $\{-0.9, 2.7, -3.0\}$ (Ⅱ)' $5$ $K_7$ $\{-2.1, -1.7, 0.9, 10.4, -8.4\}$ $12.6565$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$ (Ⅲ)' $20$ $K_8$ $U(-28, 28)$ $49.8966$ $U(-\pi, \pi)$
 Case $N$ $K$ $\Omega$ $\displaystyle\max_{1\leq i \leq N}\frac{|\omega_i|}{k_{ii}}$ $\Theta(0)$ (Ⅰ) $3$ $K_3$ $\{1.7, 1.1, -1.7\}$ $2.56732$ $\{-0.9, 2.7, -3.0\}$ (Ⅱ) $5$ $K_4$ $\{-1.1, -1.7, 0.9, 1.4, -0.4\}$ $2.52008$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$ (Ⅲ) $20$ $K_5$ $U(-28, 28)$ $37.4299$ $U(-\pi, \pi)$ (Ⅰ)' $3$ $K_6$ $\{5.0, 2.1, -3.7\}$ $7.01639$ $\{-0.9, 2.7, -3.0\}$ (Ⅱ)' $5$ $K_7$ $\{-2.1, -1.7, 0.9, 10.4, -8.4\}$ $12.6565$ $\{-0.8, 1.8, -0.2, 2.6, -1.4\}$ (Ⅲ)' $20$ $K_8$ $U(-28, 28)$ $49.8966$ $U(-\pi, \pi)$
The Winfree phases $\Theta(t)$ and the modulus of the order parameter, $|r|$, given in (4.1).
 $t$ (Ⅰ) (Ⅱ) (Ⅲ) (Ⅰ)' (Ⅱ)' (Ⅲ)' $0$ $D(\Theta(t))$ 5.70000 4.00000 5.74000 5.70000 4.00000 5.74710 $D(\dot{\Theta}(t))$ 4.27740 9.39060 54.67330 9.42280 15.11920 76.17700 $|r|$ 0.45537 0.17338 0.03257 0.45537 0.17338 0.24487 $5$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 30.78020 81.84340 27.60650 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 11.39260 19.27490 0.98300 $|r|$ 0.94544 0.98766 0.77602 0.90994 0.42164 0.80234 $20$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 109.18220 316.97400 78.33540 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 3.66710 9.38180 0.88459 $|r|$ 0.94544 0.98766 0.77602 0.42567 0.64836 0.77224 $150$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 818.10600 2347.20000 549.54340 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 10.20440 16.58980 0.72854 $|r|$ 0.94544 0.98766 0.77602 0.78081 0.55872 0.77419 $500$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 2725.00000 7813.20000 1818.60000 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 5.57280 11.35220 0.35697 $|r|$ 0.94544 0.98766 0.77602 0.19058 0.57754 0.78170
 $t$ (Ⅰ) (Ⅱ) (Ⅲ) (Ⅰ)' (Ⅱ)' (Ⅲ)' $0$ $D(\Theta(t))$ 5.70000 4.00000 5.74000 5.70000 4.00000 5.74710 $D(\dot{\Theta}(t))$ 4.27740 9.39060 54.67330 9.42280 15.11920 76.17700 $|r|$ 0.45537 0.17338 0.03257 0.45537 0.17338 0.24487 $5$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 30.78020 81.84340 27.60650 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 11.39260 19.27490 0.98300 $|r|$ 0.94544 0.98766 0.77602 0.90994 0.42164 0.80234 $20$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 109.18220 316.97400 78.33540 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 3.66710 9.38180 0.88459 $|r|$ 0.94544 0.98766 0.77602 0.42567 0.64836 0.77224 $150$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 818.10600 2347.20000 549.54340 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 10.20440 16.58980 0.72854 $|r|$ 0.94544 0.98766 0.77602 0.78081 0.55872 0.77419 $500$ $D(\Theta(t))$ 13.18640 0.40287 14.95700 2725.00000 7813.20000 1818.60000 $D(\dot{\Theta}(t))$ 0.00000 0.00000 0.00000 5.57280 11.35220 0.35697 $|r|$ 0.94544 0.98766 0.77602 0.19058 0.57754 0.78170
 [1] Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032 [2] Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012 [3] M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424 [4] Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457 [5] Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464 [6] Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 [7] Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362 [8] Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 [9] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001 [10] Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 [11] Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 [12] Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 [13] Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021040 [14] Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316 [15] Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317 [16] Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 [17] Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344 [18] Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349 [19] Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459 [20] Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.27

## Tools

Article outline

Figures and Tables