• Previous Article
    Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics
  • DCDS-B Home
  • This Issue
  • Next Article
    Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion
July  2019, 24(7): 3395-3438. doi: 10.3934/dcdsb.2018326

Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain

School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China

Received  May 2018 Revised  July 2018 Published  January 2019

Fund Project: The author is supported by NSF grant 11601046, CTBU Grant 1751041 and Chongqing key laboratory of social economy and applied statistics.

In this article, a notion of bi-spatial continuous random dynamical system is introduced between two completely separable metric spaces. It is show that roughly speaking, if such a random dynamical system is asymptotically compact and random absorbing in the initial space, then it admits a bi-spatial pullback attractor which is measurable in two spaces. The measurability of pullback attractor in the regular spaces is completely solved theoretically. As applications, we study the dynamical behaviour of solutions of the non-autonomous stochastic fractional power dissipative equation on $ \mathbb{R}^N $ with additive white noise and a polynomial-like growth nonlinearity of order $ p, p\geq2 $. We prove that this equation generates a bi-spatial $ (L^2(\mathbb{R}^N), H^s(\mathbb{R}^N)\cap L^p(\mathbb{R}^N)) $-continuous random dynamical system, and the random dynamics for this system is captured by a bi-spatial pullback attractor which is compact and attracting in $ H^s(\mathbb{R}^N)\cap L^p(\mathbb{R}^N) $, where $ H^s(\mathbb{R}^N) $ is a fractional Sobolev space with $ s\in(0,1) $. Especially, the measurability of pullback attractor is individually derived by proving the the continuity of solutions in $ H^s(\mathbb{R}^N) $ and $ L^p(\mathbb{R}^N) $ with respect to the sample. A difference estimates approach, rather than the usual truncation estimate and spectral decomposition technique, is employed to overcome the loss of Sobolev compact embedding in $ H^s(\mathbb{R}^N)\cap L^p(\mathbb{R}^N),s\in(0,1),N\geq1 $.

Citation: Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326
References:
[1]

L. Arnold, Random Dynamical Systems, Springer, Berlin, Heidelberg, 1998. doi: 10.1007/BFb0095238.  Google Scholar

[2]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems, in Advances in Nonlinear Stochastic Mechanics(eds. A. Naess and S. Krenk), Solid Mech. Appl. vol. 47, Kluwer Acad. Publ. Dordrecht, (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Springer, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

T. Bartsch and Z. Liu, On a supperlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[7]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst., 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[10]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference. Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin, 1977.  Google Scholar

[13]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[16]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

M. D. Donsker and S. R. S. Varadhan, On laws of the iterated logarithm for local times, Comm. Pure Appl. Math., 30 (1977), 707-753.  doi: 10.1002/cpa.3160300603.  Google Scholar

[19]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[20]

R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.  doi: 10.1090/S0002-9947-1961-0137148-5.  Google Scholar

[21]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[22]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[23]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in, Difference equations, discrete dynamical systems and applications (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3.  Google Scholar

[24]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[25]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[26]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[27]

N. S. Landkof, Foundations of Modern Potential Theory (Translated from the Russian by A. P. Doohovskoy), Die Grundlehren der mathematischen Wissenschaften, vol.180, Springer-Verlag, NewYork-Heidelberg, 1972.  Google Scholar

[28]

L. LiJ. Sun and S. Tersian, Infinitely many sign-changing solutions for the Brézis-Nirenberg problem involving the fractional Laplacian, Fract. Calc. Appl. Anal., 20 (2017), 1146-1164.  doi: 10.1515/fca-2017-0061.  Google Scholar

[29]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[30]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[31]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[32]

H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on Rn, Nonlinear Anal., 128 (2015), 176-198. doi: 10.1016/j.na.2015.06.033.  Google Scholar

[33]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[34]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[35]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[36]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[37]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192. Google Scholar

[38]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690.  Google Scholar

[39] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NY, 1970.   Google Scholar
[40]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[41]

B. Q. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[42]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[43]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dyn. Syst., 34 (2014), 269-330.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[44]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[45]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[46]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82. doi: 10.1016/j.na.2017.04.006.  Google Scholar

[47]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamcal systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[48]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[49]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic p-Laplacian equations on RN, Math. Meth. Appl. Sci., 40 (2017), 4863-4879.   Google Scholar

[50]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207.  doi: 10.1016/j.jmaa.2017.01.064.  Google Scholar

[51]

K. Yosida, Functional Analysis, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[52]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_\rho^p$, Appl. Math. Comput., 291 (2016), 226-243.  doi: 10.1016/j.amc.2016.06.045.  Google Scholar

[53]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824. doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[54]

W. Zhao, Random dynamics of stochastic p-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203. doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[55]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2499-2526. doi: 10.3934/dcdsb.2018065.  Google Scholar

[56]

W. Zhao and Y. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[57]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Applied Math. Comput., 239 (2014), 358-374.  doi: 10.1016/j.amc.2014.04.106.  Google Scholar

[58]

Q. Zhou and K. Wang, Existence and multiplicity of solutions for nonlinear elliptic problems with the fractional Laplacian, Fract. Calc. Appl. Anal., 18 (2015), 133-145.  doi: 10.1515/fca-2015-0009.  Google Scholar

[59]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105. doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer, Berlin, Heidelberg, 1998. doi: 10.1007/BFb0095238.  Google Scholar

[2]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems, in Advances in Nonlinear Stochastic Mechanics(eds. A. Naess and S. Krenk), Solid Mech. Appl. vol. 47, Kluwer Acad. Publ. Dordrecht, (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[3]

J. P. Aubin and H. Frankowska, Set-Valued Analysis, Springer, Boston, 1990. doi: 10.1007/978-0-8176-4848-0.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[5]

T. Bartsch and Z. Liu, On a supperlinear elliptic p-Laplacian equation, J. Differential Equations, 198 (2004), 149-175.  doi: 10.1016/j.jde.2003.08.001.  Google Scholar

[6]

P. W. BatesK. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Physica D, 289 (2014), 32-50.  doi: 10.1016/j.physd.2014.08.004.  Google Scholar

[7]

D. CaoC. Sun and M. Yang, Dynamics for a stochastic reaction-diffusion equation with additive noise, J. Differential Equations, 259 (2015), 838-872.  doi: 10.1016/j.jde.2015.02.020.  Google Scholar

[8]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Nonautonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst., 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[10]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Difference. Equ. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Appl. Math. Sciences, 184, Springer, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[12]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin, 1977.  Google Scholar

[13]

I. Chueshov, Monotone Random Systems Theory and Applications, Springer-Verlag, Berlin, 2002. doi: 10.1007/b83277.  Google Scholar

[14]

H. Crauel and F. Flandoli, Attracors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[15]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[16]

H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch. Math. Ver., 117 (2015), 173-206.  doi: 10.1365/s13291-015-0115-0.  Google Scholar

[17]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

M. D. Donsker and S. R. S. Varadhan, On laws of the iterated logarithm for local times, Comm. Pure Appl. Math., 30 (1977), 707-753.  doi: 10.1002/cpa.3160300603.  Google Scholar

[19]

F. Flandoli and B. Schmalfuß, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.  doi: 10.1080/17442509608834083.  Google Scholar

[20]

R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.  doi: 10.1090/S0002-9947-1961-0137148-5.  Google Scholar

[21]

A. GuD. LiB. Wang and H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn, J. Differential Equations, 264 (2018), 7094-7137.  doi: 10.1016/j.jde.2018.02.011.  Google Scholar

[22]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997. doi: 10.1007/978-1-4615-6359-4.  Google Scholar

[23]

P. E. Kloeden and T. Lorenz, Pullback and forward attractors of nonautonomous difference equations, in, Difference equations, discrete dynamical systems and applications (eds. M. Bohner, Y. Ding and O. Dosly), Springer-Verlag, Heidelberg, 150 (2015), 37-48. doi: 10.1007/978-3-319-24747-2_3.  Google Scholar

[24]

P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268.  doi: 10.1090/proc/12735.  Google Scholar

[25]

P. E. Kloeden and M. Yang, Forward attraction in nonautonomous difference equations, J. Difference. Equ. Appl., 22 (2016), 513-525.  doi: 10.1080/10236198.2015.1107550.  Google Scholar

[26]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.  doi: 10.1016/j.jmaa.2014.03.037.  Google Scholar

[27]

N. S. Landkof, Foundations of Modern Potential Theory (Translated from the Russian by A. P. Doohovskoy), Die Grundlehren der mathematischen Wissenschaften, vol.180, Springer-Verlag, NewYork-Heidelberg, 1972.  Google Scholar

[28]

L. LiJ. Sun and S. Tersian, Infinitely many sign-changing solutions for the Brézis-Nirenberg problem involving the fractional Laplacian, Fract. Calc. Appl. Anal., 20 (2017), 1146-1164.  doi: 10.1515/fca-2017-0061.  Google Scholar

[29]

Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic FitzHugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.  doi: 10.3934/dcdsb.2016.21.1203.  Google Scholar

[30]

Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.  doi: 10.1016/j.jde.2008.06.031.  Google Scholar

[31]

Y. LiA. Gu and J. Li, Existences and continuity of bi-spatial random attractors and application to stochasitic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.  doi: 10.1016/j.jde.2014.09.021.  Google Scholar

[32]

H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on Rn, Nonlinear Anal., 128 (2015), 176-198. doi: 10.1016/j.na.2015.06.033.  Google Scholar

[33]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 14 (2016), 273-295.  doi: 10.4310/CMS.2016.v14.n1.a11.  Google Scholar

[34]

H. LuP. W. BatesS. Lu and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differential Equations, 259 (2015), 5276-5301.  doi: 10.1016/j.jde.2015.06.028.  Google Scholar

[35]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[36]

J. C. Robinson, Infinite-Dimensional Dyanmical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[37]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, (1992), 185-192. Google Scholar

[38]

B. Schmalfuß, Attractors for the nonautonomous dynamical systems, in International Conference on Differential Equations (eds. B. Fiedler, K. Gröger and J. Sprekels), World Sci. Publishing, Singapore, (2000), 684-690.  Google Scholar

[39] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NY, 1970.   Google Scholar
[40]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.  Google Scholar

[41]

B. Q. Tang, Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 441-466.  doi: 10.3934/dcds.2015.35.441.  Google Scholar

[42]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[43]

B. Wang, Random attractors for non-autonomous stochastic wave euqations with multiplicative noises, Discrete Contin. Dyn. Syst., 34 (2014), 269-330.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[44]

B. Wang, Suffcient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[45]

B. Wang, Multivalued non-autonomous random dynamical systems for wave equations without uniqueness, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2011-2051.  doi: 10.3934/dcdsb.2017119.  Google Scholar

[46]

B. Wang, Asymptotic behavior of non-autonomous fractional stochastic reaction-diffusion equations, Nonlinear Anal., 158 (2017), 60-82. doi: 10.1016/j.na.2017.04.006.  Google Scholar

[47]

Y. Wang and J. Wang, Pullback attractors for multi-valued non-compact random dynamcal systems generated by reaction-diffusion equations on an unbounded domain, J. Differential Equations, 259 (2015), 728-776.  doi: 10.1016/j.jde.2015.02.026.  Google Scholar

[48]

Z. Wang and S. Zhou, Random attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems with random coupled coefficients, Taiwanese J. Math., 20 (2016), 589-616.  doi: 10.11650/tjm.20.2016.6699.  Google Scholar

[49]

J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic p-Laplacian equations on RN, Math. Meth. Appl. Sci., 40 (2017), 4863-4879.   Google Scholar

[50]

J. YinY. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 450 (2017), 1180-1207.  doi: 10.1016/j.jmaa.2017.01.064.  Google Scholar

[51]

K. Yosida, Functional Analysis, Springer-Verlag, New York-Heidelberg, 1974. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[52]

W. Zhao and Y. Zhang, Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space $\ell_\rho^p$, Appl. Math. Comput., 291 (2016), 226-243.  doi: 10.1016/j.amc.2016.06.045.  Google Scholar

[53]

W. Zhao, Continuity and random dynamics of the non-autonomous stochastic FitzHugh-Nagumo system on $\mathbb{R}^N$, Comput. Math. Appl., 75 (2018), 3801-3824. doi: 10.1016/j.camwa.2018.02.031.  Google Scholar

[54]

W. Zhao, Random dynamics of stochastic p-Laplacian equations on $\mathbb{R}^N$ with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203. doi: 10.1016/j.jmaa.2017.06.025.  Google Scholar

[55]

W. Zhao, Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2499-2526. doi: 10.3934/dcdsb.2018065.  Google Scholar

[56]

W. Zhao and Y. Li, (L2, Lp)-random attractors for stochastic reaction-diffusion equation on unbounded domains, Nonlinear Anal., 75 (2012), 485-502.  doi: 10.1016/j.na.2011.08.050.  Google Scholar

[57]

W. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noises, Applied Math. Comput., 239 (2014), 358-374.  doi: 10.1016/j.amc.2014.04.106.  Google Scholar

[58]

Q. Zhou and K. Wang, Existence and multiplicity of solutions for nonlinear elliptic problems with the fractional Laplacian, Fract. Calc. Appl. Anal., 18 (2015), 133-145.  doi: 10.1515/fca-2015-0009.  Google Scholar

[59]

K. Zhu and F. Zhou, Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in $\mathbb{R}^N$, Comput. Math. Appl., 71 (2016), 2089-2105. doi: 10.1016/j.camwa.2016.04.004.  Google Scholar

[1]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[2]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[3]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[4]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[5]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[6]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[9]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[19]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[20]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (112)
  • HTML views (466)
  • Cited by (0)

Other articles
by authors

[Back to Top]