September  2019, 24(9): 4665-4684. doi: 10.3934/dcdsb.2018328

Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production

1. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China

2. 

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China

* Corresponding author: Wei Wang

Received  May 2018 Published  January 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (11671066, 11571020, 11671021)

In this paper we develop a new and convenient technique, with fractional Gagliardo-Nirenberg type inequalities inter alia involved, to treat the quasilinear fully parabolic chemotaxis system with indirect signal production: $ u_t = \nabla\cdot(D(u)\nabla u-S(u)\nabla v) $, $ \tau_1v_t = \Delta v-a_1v+b_1w $, $ \tau_2w_t = \Delta w-a_2w+b_2u $, under homogeneous Neumann boundary conditions in a bounded domain $ \Omega\subset\Bbb{R}^{n} $ ($ n\geq 1 $), where $ \tau_i,a_i,b_i>0 $ ($ i = 1,2 $) are constants, and the diffusivity $ D $ and the density-dependent sensitivity $ S $ satisfy $ D(s)\geq a_0(s+1)^{-\alpha} $ and $ 0\leq S(s)\leq b_0(s+1)^{\beta} $ for all $ s\geq 0 $ with $ a_0,b_0>0 $ and $ \alpha,\beta\in\Bbb R $. It is proved that if $ \alpha+\beta<3 $ and $ n = 1 $, or $ \alpha+\beta<4/n $ with $ n\geq 2 $, for any properly regular initial data, this problem has a globally bounded and classical solution. Furthermore, consider the quasilinear attraction-repulsion chemotaxis model: $ u_t = \nabla\cdot(D(u)\nabla u)-\chi\nabla\cdot(u\nabla z)+\xi\nabla\cdot(u\nabla w) $, $ z_t = \Delta z-\rho z+\mu u $, $ w_t = \Delta w-\delta w+\gamma u $, where $ \chi,\mu,\xi,\gamma,\rho,\delta>0 $, and the diffusivity $ D $ fulfills $ D(s)\geq c_0(s+1)^{M-1} $ for any $ s\geq 0 $ with $ c_0>0 $ and $ M\in\Bbb R $. As a corollary of the aforementioned assertion, it is shown that when the repulsion cancels the attraction (i.e. $ \chi\mu = \xi\gamma $), the solution is globally bounded if $ M>-1 $ and $ n = 1 $, or $ M>2-4/n $ with $ n\geq 2 $. This seems to be the first result for this quasilinear fully parabolic problem that genuinely concerns the contribution of repulsion.

Citation: Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328
References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2]

H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 593-676. Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer-Verlag, Berlin, 1976. Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[5]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2. Google Scholar

[6]

A. Friedman, Partial Differential Equations, Holt, Rinehard and Winston, New York, 1969. Google Scholar

[7]

K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148. doi: 10.1016/j.jde.2017.02.031. Google Scholar

[8]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159-175. Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. Google Scholar

[10]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super Pisa Cl. Sci., 24 (1997), 633-683. Google Scholar

[11]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669. doi: 10.1080/03605309708821314. Google Scholar

[12]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[13]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128. doi: 10.1142/S0218202516400091. Google Scholar

[14]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[15]

H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049. Google Scholar

[16]

H. Jin and Z. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080. Google Scholar

[17]

H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Continuous Dynam. Systems - B, 23 (2018), 3071-3085. doi: 10.3934/dcdsb.2017197. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968. Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007. Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302. Google Scholar

[22]

K. LinC. Mu and L. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124. doi: 10.1016/j.jmaa.2014.12.052. Google Scholar

[23]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240. Google Scholar

[24]

J. Liu and Z. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722. Google Scholar

[25]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730. Google Scholar

[26]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint.Google Scholar

[27]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[28]

L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 733-737. Google Scholar

[29]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[30]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. Google Scholar

[31]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[32]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[33]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678. doi: 10.4171/JEMS/749. Google Scholar

[34]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162. doi: 10.1142/S0218202516400108. Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. Google Scholar

[36]

H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. doi: 10.1007/978-3-0346-0416-1. Google Scholar

[37]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319. Google Scholar

[38]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[40]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190. doi: 10.1002/mma.1346. Google Scholar

[41]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2]

H. Amann, Existence and regularity for semilinear parabolic evolution equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 11 (1984), 593-676. Google Scholar

[3]

J. Bergh and J. Löfström, Interpolation Spaces. An introduction, Springer-Verlag, Berlin, 1976. Google Scholar

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar

[5]

E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2. Google Scholar

[6]

A. Friedman, Partial Differential Equations, Holt, Rinehard and Winston, New York, 1969. Google Scholar

[7]

K. Fujie and T. Senba, Application of an Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88-148. doi: 10.1016/j.jde.2017.02.031. Google Scholar

[8]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, RIMS Kôkyûroku Bessatsu B26: Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159-175. Google Scholar

[9]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. Google Scholar

[10]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super Pisa Cl. Sci., 24 (1997), 633-683. Google Scholar

[11]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p$-$L^q$ estimates for parabolic evolution equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669. doi: 10.1080/03605309708821314. Google Scholar

[12]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[13]

B. Hu and Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111-2128. doi: 10.1142/S0218202516400091. Google Scholar

[14]

S. IshidaK. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[15]

H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463-1478. doi: 10.1016/j.jmaa.2014.09.049. Google Scholar

[16]

H. Jin and Z. Wang, Asymptotic dynamics of the one-dimensional attraction-repulsion Keller-Segel model, Math. Methods Appl. Sci., 38 (2015), 444-457. doi: 10.1002/mma.3080. Google Scholar

[17]

H. Jin and T. Xiang, Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions, Discrete Continuous Dynam. Systems - B, 23 (2018), 3071-3085. doi: 10.3934/dcdsb.2017197. Google Scholar

[18]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415. Google Scholar

[19]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968. Google Scholar

[20]

J. Lankeit, Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion, J. Differential Equations, 262 (2017), 4052-4084. doi: 10.1016/j.jde.2016.12.007. Google Scholar

[21]

G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. doi: 10.1142/3302. Google Scholar

[22]

K. LinC. Mu and L. Wang, Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426 (2015), 105-124. doi: 10.1016/j.jmaa.2014.12.052. Google Scholar

[23]

D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240. Google Scholar

[24]

J. Liu and Z. Wang, Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dynam., 6 (2012), 31-41. doi: 10.1080/17513758.2011.571722. Google Scholar

[25]

M. LucaA. Chavez-RossL. Edelstein-Keshet and A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection?, Bull. Math. Biol., 65 (2003), 693-730. Google Scholar

[26]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional Keller-Segel system, preprint.Google Scholar

[27]

T. NagaiT. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. Google Scholar

[28]

L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 733-737. Google Scholar

[29]

K. OsakiT. TsujikawaA. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144. doi: 10.1016/S0362-546X(01)00815-X. Google Scholar

[30]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. Google Scholar

[31]

K. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. Google Scholar

[32]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[33]

Y. Tao and M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641-3678. doi: 10.4171/JEMS/749. Google Scholar

[34]

J. I. Tello and D. Wrzosek, Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26 (2016), 2129-2162. doi: 10.1142/S0218202516400108. Google Scholar

[35]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holland, Amsterdam, 1978. Google Scholar

[36]

H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. doi: 10.1007/978-3-0346-0416-1. Google Scholar

[37]

M. Winkler, A critical exponent in a degenerate parabolic equation, Math. Methods Appl. Sci., 25 (2002), 911-925. doi: 10.1002/mma.319. Google Scholar

[38]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. Google Scholar

[40]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity, Math. Methods Appl. Sci., 34 (2011), 176-190. doi: 10.1002/mma.1346. Google Scholar

[41]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[1]

Philippe Laurençot. Global bounded and unbounded solutions to a chemotaxis system with indirect signal production. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2019145

[2]

Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147

[3]

Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092

[4]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[5]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[6]

Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018

[7]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[8]

Yilong Wang, Zhaoyin Xiang. Boundedness in a quasilinear 2D parabolic-parabolic attraction-repulsion chemotaxis system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1953-1973. doi: 10.3934/dcdsb.2016031

[9]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[10]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[11]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[12]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[13]

Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132

[14]

Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure & Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587

[15]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[16]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[17]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[18]

Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026

[19]

Hai-Yang Jin, Tian Xiang. Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3071-3085. doi: 10.3934/dcdsb.2017197

[20]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (85)
  • HTML views (390)
  • Cited by (0)

Other articles
by authors

[Back to Top]