August  2019, 24(8): 3765-3818. doi: 10.3934/dcdsb.2018331

Stochastic one layer shallow water equations with Lévy noise

Department of Mathematics and The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405, USA

* Corresponding author: Roger Temam

Dedicated to Peter Eris Kloeden on the occasion of his 70th birthday

Received  December 2017 Revised  May 2018 Published  January 2019

This work investigates the existence of both martingale and pathwise solutions of the single layer shallow water equations on a bounded domain $ \mathcal{M} \subset \mathbb{R}^2 $ perturbed by a Lévy noise which may represent bursts of surface winds. The construction of both solutions are based on some truncation, the classical Faedo-Galerkin approximation scheme, a modified version of the Skorokhod representation theorem, stopping time arguments and anisotropic estimates.

Citation: Justin Cyr, Phuong Nguyen, Roger Temam. Stochastic one layer shallow water equations with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3765-3818. doi: 10.3934/dcdsb.2018331
References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probability, 6 (1978), 335-340. doi: 10.1214/aop/1176995579. Google Scholar

[2]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304. doi: 10.1007/BF00996149. Google Scholar

[3]

H. BessaihE. Hausenblas and P. A. Razafimandimby, Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1661-1697. doi: 10.1007/s00030-015-0339-9. Google Scholar

[4]

P. Billingsley, Convergence of Probability Measures, $2^{nd}$ edition, Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962. Google Scholar

[5]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139. doi: 10.1016/j.na.2012.10.011. Google Scholar

[6]

Z. BrzeźniakE. Hausenblas and P. A. Razafimandimby, Stochastic reaction-diffusion equations driven by jump processes, Potential Anal., 49 (2018), 131-201. doi: 10.1007/s11118-017-9651-9. Google Scholar

[7]

Z. BrzeźniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310. doi: 10.1016/j.nonrwa.2013.12.005. Google Scholar

[8]

N. Chen and A. J. Majda, Simple dynamical models capturing the key features of the Central Pacific El Niño, P. Natl. Acad. Sci. USA, 113 (2016), 11732-11737. Google Scholar

[9]

Q. ChenC. Miao and Z. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474. doi: 10.1137/060660552. Google Scholar

[10]

J. Cyr, S. Tang and R. Temam, A comparison of two settings for stochastic integration with respect to Lévy processes in infinite dimensions, in Trends in Applications of Mathematics to Mechanics (eds. E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin), Springer INdAM Series, 27 (2018), 289-373. Google Scholar

[11]

J. CyrS. Tang and R. Temam., The Euler equations of an inviscid incompressible fluid driven by a Lévy noise, Nonlinear Anal.-Real, 44 (2018), 173-222. doi: 10.1016/j.nonrwa.2018.04.002. Google Scholar

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, $2^{nd}$ edition, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2014. doi: 10.1017/CBO9781107295513. Google Scholar

[13]

D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, $2^{nd}$ edition, Probability and its Applications. Springer, New York, 2008. doi: 10.1007/978-0-387-49835-5. Google Scholar

[14]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144. doi: 10.1016/j.physd.2011.03.009. Google Scholar

[15]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118. doi: 10.1088/0951-7715/25/7/2093. Google Scholar

[16]

B. Di MartinoF. J. Chatelon and P. Orenga, The nonlinear Galerkin method applied to shallow water equations, Math. Models Methods Appl. Sci., 9 (1999), 825-854. doi: 10.1142/S0218202599000397. Google Scholar

[17]

Z. Dong and Y. Xie, Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise, Sci. China Ser. A, 52 (2009), 1497-1524. doi: 10.1007/s11425-009-0124-5. Google Scholar

[18]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658. Google Scholar

[19]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise, Stoch. Anal. Appl., 31 (2013), 381-426. doi: 10.1080/07362994.2013.759482. Google Scholar

[20]

F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391. doi: 10.1007/BF01192467. Google Scholar

[21]

N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14 (2009), 567-600. Google Scholar

[22]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158. doi: 10.1007/BF01203833. Google Scholar

[23]

D. J. Higham and P. E. Kloeden, Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems, J. Comput. Appl. Math., 205 (2007), 949-956. doi: 10.1016/j.cam.2006.03.039. Google Scholar

[24]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, $2^{nd}$ edition, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. Google Scholar

[25]

T. G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electron. J. Probab., 12 (2007), 951-965. doi: 10.1214/EJP.v12-431. Google Scholar

[26]

J. LinkP. Nguyen and R. Temam, Local martingale solutions to the stochastic one layer shallow water equations, J. Math. Anal. Appl., 448 (2017), 93-139. doi: 10.1016/j.jmaa.2016.10.036. Google Scholar

[27]

M. Métivier, Semimartingales: A Course on Stochastic Processes, volume 2 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin-New York, 1982. Google Scholar

[28]

M. Métivier, Stochastic Partial Differential Equations in Infinite-dimensional Spaces, Scuola Normale Superiore di Pisa. Quaderni. [Publications of the Scuola Normale Superiore of Pisa]. Scuola Normale Superiore, Pisa, 1988. Google Scholar

[29]

E. Motyl, Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912. doi: 10.1007/s11118-012-9300-2. Google Scholar

[30]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains—abstract framework and applications, Stochastic Process. Appl., 124 (2014), 2052-2097. doi: 10.1016/j.spa.2014.01.009. Google Scholar

[31]

P. Orenga, Un théorème d'existence de solutions d’un problème de shallow water, (French) [A theorem on the existence of solutions of a shallow-water problem], Arch. Rational Mech. Anal., 130 (1995), 183-204. doi: 10.1007/BF00375155. Google Scholar

[32]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations With Lévy Noise: An Evolution Equation Approach, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373. Google Scholar

[33]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, $3^{rd}$ edition, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-06400-9. Google Scholar

[34]

B. Rüdiger, Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces, Stoch. Stoch. Rep., 76 (2004), 213-242. doi: 10.1080/10451120410001704081. Google Scholar

[35]

L. Sundbye, Global existence for the Cauchy problem for the viscous shallow water equations, Rocky Mountain J. Math., 28 (1998), 1135-1152. doi: 10.1216/rmjm/1181071760. Google Scholar

[36]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, $2^{nd}$ edition, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, first edition, 1983; second edition, 1995. doi: 10.1137/1.9781611970050. Google Scholar

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343. Google Scholar

[38]

S. ThualA. J. MajdaN. Chen and S. N. Stechmann, Simple stochastic model for El Niño with westerly wind bursts, P. Natl. Acad. Sci. USA, 113 (2016), 10245-10250. doi: 10.1073/pnas.1612002113. Google Scholar

[39]

K. R. Tubbs and F. T.-C. Tsai, GPU accelerated lattice Boltzmann model for shallow water flow and mass transport, Internat. J. Numer. Methods Engrg., 86 (2011), 316-334. doi: 10.1002/nme.3066. Google Scholar

[40]

W. Wang and C.-J. Xu, The Cauchy problem for viscous shallow water equations, Rev. Mat. Iberoamericana, 21 (2005), 1-24. doi: 10.4171/RMI/412. Google Scholar

show all references

References:
[1]

D. Aldous, Stopping times and tightness, Ann. Probability, 6 (1978), 335-340. doi: 10.1214/aop/1176995579. Google Scholar

[2]

A. Bensoussan, Stochastic Navier-Stokes equations, Acta Appl. Math., 38 (1995), 267-304. doi: 10.1007/BF00996149. Google Scholar

[3]

H. BessaihE. Hausenblas and P. A. Razafimandimby, Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1661-1697. doi: 10.1007/s00030-015-0339-9. Google Scholar

[4]

P. Billingsley, Convergence of Probability Measures, $2^{nd}$ edition, Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, 1999. doi: 10.1002/9780470316962. Google Scholar

[5]

Z. BrzeźniakE. Hausenblas and J. Zhu, 2D stochastic Navier-Stokes equations driven by jump noise, Nonlinear Anal., 79 (2013), 122-139. doi: 10.1016/j.na.2012.10.011. Google Scholar

[6]

Z. BrzeźniakE. Hausenblas and P. A. Razafimandimby, Stochastic reaction-diffusion equations driven by jump processes, Potential Anal., 49 (2018), 131-201. doi: 10.1007/s11118-017-9651-9. Google Scholar

[7]

Z. BrzeźniakW. Liu and J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17 (2014), 283-310. doi: 10.1016/j.nonrwa.2013.12.005. Google Scholar

[8]

N. Chen and A. J. Majda, Simple dynamical models capturing the key features of the Central Pacific El Niño, P. Natl. Acad. Sci. USA, 113 (2016), 11732-11737. Google Scholar

[9]

Q. ChenC. Miao and Z. Zhang, On the well-posedness for the viscous shallow water equations, SIAM J. Math. Anal., 40 (2008), 443-474. doi: 10.1137/060660552. Google Scholar

[10]

J. Cyr, S. Tang and R. Temam, A comparison of two settings for stochastic integration with respect to Lévy processes in infinite dimensions, in Trends in Applications of Mathematics to Mechanics (eds. E. Rocca, U. Stefanelli, L. Truskinovsky, A. Visintin), Springer INdAM Series, 27 (2018), 289-373. Google Scholar

[11]

J. CyrS. Tang and R. Temam., The Euler equations of an inviscid incompressible fluid driven by a Lévy noise, Nonlinear Anal.-Real, 44 (2018), 173-222. doi: 10.1016/j.nonrwa.2018.04.002. Google Scholar

[12]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, $2^{nd}$ edition, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2014. doi: 10.1017/CBO9781107295513. Google Scholar

[13]

D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. II: General Theory and Structure, $2^{nd}$ edition, Probability and its Applications. Springer, New York, 2008. doi: 10.1007/978-0-387-49835-5. Google Scholar

[14]

A. DebusscheN. Glatt-Holtz and R. Temam, Local martingale and pathwise solutions for an abstract fluids model, Phys. D, 240 (2011), 1123-1144. doi: 10.1016/j.physd.2011.03.009. Google Scholar

[15]

A. DebusscheN. Glatt-HoltzR. Temam and M. Ziane, Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity, 25 (2012), 2093-2118. doi: 10.1088/0951-7715/25/7/2093. Google Scholar

[16]

B. Di MartinoF. J. Chatelon and P. Orenga, The nonlinear Galerkin method applied to shallow water equations, Math. Models Methods Appl. Sci., 9 (1999), 825-854. doi: 10.1142/S0218202599000397. Google Scholar

[17]

Z. Dong and Y. Xie, Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise, Sci. China Ser. A, 52 (2009), 1497-1524. doi: 10.1007/s11425-009-0124-5. Google Scholar

[18]

S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658. Google Scholar

[19]

B. P. W. Fernando and S. S. Sritharan, Nonlinear filtering of stochastic Navier-Stokes equation with Itô-Lévy noise, Stoch. Anal. Appl., 31 (2013), 381-426. doi: 10.1080/07362994.2013.759482. Google Scholar

[20]

F. Flandoli and D. Gątarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Related Fields, 102 (1995), 367-391. doi: 10.1007/BF01192467. Google Scholar

[21]

N. Glatt-Holtz and M. Ziane, Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differential Equations, 14 (2009), 567-600. Google Scholar

[22]

I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158. doi: 10.1007/BF01203833. Google Scholar

[23]

D. J. Higham and P. E. Kloeden, Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems, J. Comput. Appl. Math., 205 (2007), 949-956. doi: 10.1016/j.cam.2006.03.039. Google Scholar

[24]

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, $2^{nd}$ edition, volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. Google Scholar

[25]

T. G. Kurtz, The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities, Electron. J. Probab., 12 (2007), 951-965. doi: 10.1214/EJP.v12-431. Google Scholar

[26]

J. LinkP. Nguyen and R. Temam, Local martingale solutions to the stochastic one layer shallow water equations, J. Math. Anal. Appl., 448 (2017), 93-139. doi: 10.1016/j.jmaa.2016.10.036. Google Scholar

[27]

M. Métivier, Semimartingales: A Course on Stochastic Processes, volume 2 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin-New York, 1982. Google Scholar

[28]

M. Métivier, Stochastic Partial Differential Equations in Infinite-dimensional Spaces, Scuola Normale Superiore di Pisa. Quaderni. [Publications of the Scuola Normale Superiore of Pisa]. Scuola Normale Superiore, Pisa, 1988. Google Scholar

[29]

E. Motyl, Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains, Potential Anal., 38 (2013), 863-912. doi: 10.1007/s11118-012-9300-2. Google Scholar

[30]

E. Motyl, Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains—abstract framework and applications, Stochastic Process. Appl., 124 (2014), 2052-2097. doi: 10.1016/j.spa.2014.01.009. Google Scholar

[31]

P. Orenga, Un théorème d'existence de solutions d’un problème de shallow water, (French) [A theorem on the existence of solutions of a shallow-water problem], Arch. Rational Mech. Anal., 130 (1995), 183-204. doi: 10.1007/BF00375155. Google Scholar

[32]

S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations With Lévy Noise: An Evolution Equation Approach, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. doi: 10.1017/CBO9780511721373. Google Scholar

[33]

D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, $3^{rd}$ edition, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-06400-9. Google Scholar

[34]

B. Rüdiger, Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces, Stoch. Stoch. Rep., 76 (2004), 213-242. doi: 10.1080/10451120410001704081. Google Scholar

[35]

L. Sundbye, Global existence for the Cauchy problem for the viscous shallow water equations, Rocky Mountain J. Math., 28 (1998), 1135-1152. doi: 10.1216/rmjm/1181071760. Google Scholar

[36]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, $2^{nd}$ edition, volume 66 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, first edition, 1983; second edition, 1995. doi: 10.1137/1.9781611970050. Google Scholar

[37]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001. doi: 10.1090/chel/343. Google Scholar

[38]

S. ThualA. J. MajdaN. Chen and S. N. Stechmann, Simple stochastic model for El Niño with westerly wind bursts, P. Natl. Acad. Sci. USA, 113 (2016), 10245-10250. doi: 10.1073/pnas.1612002113. Google Scholar

[39]

K. R. Tubbs and F. T.-C. Tsai, GPU accelerated lattice Boltzmann model for shallow water flow and mass transport, Internat. J. Numer. Methods Engrg., 86 (2011), 316-334. doi: 10.1002/nme.3066. Google Scholar

[40]

W. Wang and C.-J. Xu, The Cauchy problem for viscous shallow water equations, Rev. Mat. Iberoamericana, 21 (2005), 1-24. doi: 10.4171/RMI/412. Google Scholar

[1]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[2]

Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221

[3]

Xueqin Li, Chao Tang, Tianmin Huang. Poisson $S^2$-almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3309-3345. doi: 10.3934/dcdsb.2018282

[4]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[5]

Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo, Roger Pettersson. A stochastic SIRI epidemic model with Lévy noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2415-2431. doi: 10.3934/dcdsb.2018057

[6]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[7]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[8]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

[9]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[10]

Chaman Kumar, Sotirios Sabanis. On tamed milstein schemes of SDEs driven by Lévy noise. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 421-463. doi: 10.3934/dcdsb.2017020

[11]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[12]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[13]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[14]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[15]

Madalina Petcu, Roger Temam. An interface problem: The two-layer shallow water equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5327-5345. doi: 10.3934/dcds.2013.33.5327

[16]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[17]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[18]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2018, 0 (0) : 1-37. doi: 10.3934/jcd.2019001

[19]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[20]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (39)
  • HTML views (371)
  • Cited by (0)

Other articles
by authors

[Back to Top]