
-
Previous Article
Multiobjective model predictive control for stabilizing cost criteria
- DCDS-B Home
- This Issue
-
Next Article
The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter
Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation
1. | Mathematical Institute, Oxford University, Oxford OX2 6GG, United Kingdom |
2. | Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark |
3. | Institute of Mathematics, University of Lübeck, 23562 Lübeck, Germany |
The multilevel Monte Carlo path simulation method introduced by Giles (Operations Research, 56(3):607-617, 2008) exploits strong convergence properties to improve the computational complexity by combining simulations with different levels of resolution. In this paper we analyse its efficiency when using the Milstein discretisation; this has an improved order of strong convergence compared to the standard Euler-Maruyama method, and it is proved that this leads to an improved order of convergence of the variance of the multilevel estimator. Numerical results are also given for basket options to illustrate the relevance of the analysis.
References:
[1] |
R. Avikainen,
On irregular functionals of SDEs and the Euler scheme, Finance and Stochastics, 13 (2009), 381-401.
doi: 10.1007/s00780-009-0099-7. |
[2] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, 2008. |
[3] |
M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (eds. A. Keller, S. Heinrich and H. Niederreiter), Springer, 2008,343–358.
doi: 10.1007/978-3-540-74496-2_20. |
[4] |
M. B. Giles,
Multilevel Monte Carlo path simulation, Operations Research, 56 (2008), 607-617.
doi: 10.1287/opre.1070.0496. |
[5] |
M. B. Giles, Multilevel Monte Carlo for basket options, in Proceedings of the 2009 Winter Simulation Conference (eds. M. Rossetti, R. Hill, B. Johansson, A. Dunkin and R. Ingalls), IEEE, 2009, 1283–1290.
doi: 10.1109/WSC.2009.5429692. |
[6] |
M. B. Giles,
Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328.
doi: 10.1017/S096249291500001X. |
[7] |
M. B. Giles, D. Higham and X. Mao,
Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff, Finance and Stochastics, 13 (2009), 403-413.
doi: 10.1007/s00780-009-0092-1. |
[8] |
M. B. Giles and L. Szpruch,
Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lüvy area simulation, Annals of Applied Probability, 24 (2014), 1585-1620.
doi: 10.1214/13-AAP957. |
[9] |
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004. |
[10] |
P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |
show all references
References:
[1] |
R. Avikainen,
On irregular functionals of SDEs and the Euler scheme, Finance and Stochastics, 13 (2009), 381-401.
doi: 10.1007/s00780-009-0099-7. |
[2] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance, Springer, 2008. |
[3] |
M. B. Giles, Improved multilevel Monte Carlo convergence using the Milstein scheme, in Monte Carlo and Quasi-Monte Carlo Methods 2006 (eds. A. Keller, S. Heinrich and H. Niederreiter), Springer, 2008,343–358.
doi: 10.1007/978-3-540-74496-2_20. |
[4] |
M. B. Giles,
Multilevel Monte Carlo path simulation, Operations Research, 56 (2008), 607-617.
doi: 10.1287/opre.1070.0496. |
[5] |
M. B. Giles, Multilevel Monte Carlo for basket options, in Proceedings of the 2009 Winter Simulation Conference (eds. M. Rossetti, R. Hill, B. Johansson, A. Dunkin and R. Ingalls), IEEE, 2009, 1283–1290.
doi: 10.1109/WSC.2009.5429692. |
[6] |
M. B. Giles,
Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), 259-328.
doi: 10.1017/S096249291500001X. |
[7] |
M. B. Giles, D. Higham and X. Mao,
Analysing multilevel Monte Carlo for options with non-globally Lipschitz payoff, Finance and Stochastics, 13 (2009), 403-413.
doi: 10.1007/s00780-009-0092-1. |
[8] |
M. B. Giles and L. Szpruch,
Antithetic multilevel Monte Carlo estimation for multi-dimensional SDEs without Lüvy area simulation, Annals of Applied Probability, 24 (2014), 1585-1620.
doi: 10.1214/13-AAP957. |
[9] |
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, 2004. |
[10] |
P. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
doi: 10.1007/978-3-662-12616-5. |




Euler-Maruyama | Milstein | |||
option | numerical | analysis | numerical | analysis |
Lipschitz | ||||
Asian | ||||
lookback | ||||
barrier | ||||
digital |
Euler-Maruyama | Milstein | |||
option | numerical | analysis | numerical | analysis |
Lipschitz | ||||
Asian | ||||
lookback | ||||
barrier | ||||
digital |
[1] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[2] |
Juntao Yang, Viet Ha Hoang. Multilevel Markov Chain Monte Carlo for Bayesian inverse problem for Navier-Stokes equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022033 |
[3] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[4] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[5] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[6] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[7] |
Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control and Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013 |
[8] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[9] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[10] |
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 |
[11] |
Zheng Liu, Tianxiao Wang. A class of stochastic Fredholm-algebraic equations and applications in finance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3879-3903. doi: 10.3934/dcdsb.2020267 |
[12] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[13] |
Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial and Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27 |
[14] |
Chuchu Chen, Jialin Hong. Mean-square convergence of numerical approximations for a class of backward stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2051-2067. doi: 10.3934/dcdsb.2013.18.2051 |
[15] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[16] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[17] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[18] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[19] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[20] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2319-2334. doi: 10.3934/jimo.2021069 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]