-
Previous Article
Stochastic dynamics of cell lineage in tissue homeostasis
- DCDS-B Home
- This Issue
-
Next Article
Some regularity results for a double time-delayed 2D-Navier-Stokes model
Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay
1. | Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, 47011 Valladolid, Spain, IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid |
2. | Departamento de Didáctica de las Ciencias Experimentales, Sociales y de la Matemática. Facultad de Educación de Palencia, Universidad de Valladolid, 34004 Palencia, Spain, IMUVA, Instituto de Investigación en Matemáticas, Universidad de Valladolid |
This paper provides a dynamical frame to study non-autonomous parabolic partial differential equations with finite delay. Assuming monotonicity of the linearized semiflow, conditions for the existence of a continuous separation of type Ⅱ over a minimal set are given. Then, practical criteria for the uniform or strict persistence of the systems above a minimal set are obtained.
References:
[1] |
R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969. |
[2] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. |
[3] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981. |
[4] |
R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics 36, Springer, Switzerland, 2016.
doi: 10.1007/978-3-319-29025-6. |
[5] |
O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moskow, 1967 (Russian). English transl.: Transl. Math. Monographs, AMS, Providence, 1968. |
[6] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications Vol. 16, Birkhäuser, Basel, Boston, Berlin, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[7] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc. 321 (1990), 1-44.
doi: 10.2307/2001590. |
[8] |
R. H. Martin and H. L. Smith,
Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence, J. Reine Angew. Math., 413 (1991), 1-35.
|
[9] |
J. Mierczyński and W. Shen, Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evol. Equ., 4 (2004), 371-390.
doi: 10.1007/s00028-004-0160-0. |
[10] |
S. Novo, C. Núñez, R. Obaya and A. M. Sanz,
Skew-product semiflows for non-autonomous partial functional differential equations with delay, Discrete Continuous Dynam. Systems - A, 34 (2014), 4291-4321.
doi: 10.3934/dcds.2014.34.4291. |
[11] |
S. Novo, R. Obaya and A. M. Sanz, Topological dynamics for monotone skew-product semiflows with applications, J. Dynamics Differential Equations, 25 (2013), 1201-1231.
doi: 10.1007/s10884-013-9337-y. |
[12] |
S. Novo, R. Obaya and A. M. Sanz,
Uniform persistence and upper Lyapunov exponents for monotone skew-product semiflows, Nonlinearity, 26 (2013), 2409-2440.
doi: 10.1088/0951-7715/26/9/2409. |
[13] |
C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows Ⅱ: Two-dimensional systems of differential equations, J. Differential Equations, 248 (2010), 1899-1925.
doi: 10.1016/j.jde.2009.12.006. |
[14] |
R. Obaya and A. M. Sanz, Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems, J. Differential Equations, 261 (2016), 4135-4163.
doi: 10.1016/j.jde.2016.06.019. |
[15] |
R. Obaya and A. M. Sanz, Is uniform persistence a robust property in almost periodic models? A well-behaved family: almost periodic Nicholson systems, Nonlinearity, 31 (2018), 388-413.
doi: 10.1088/1361-6544/aa92e7. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations, 5 (1993), 279-303.
doi: 10.1007/BF01053163. |
[18] |
R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.
doi: 10.1016/0022-0396(78)90057-8. |
[19] |
R. J. Sacker and G. R. Sell,
Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67.
doi: 10.1006/jdeq.1994.1113. |
[20] |
W. Shen and Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Mem. Amer. Math. Soc., 647, Amer. Math. Soc., Providence, 1998.
doi: 10.1090/memo/0647. |
[21] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, 1995. |
[22] |
C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[23] |
C. C. Travis and G. F. Webb, Existence, stability, and compactness in the $\alpha$-norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143.
doi: 10.2307/1998809. |
[24] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
show all references
References:
[1] |
R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969. |
[2] |
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. |
[3] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, Berlin, Heidelberg, New York, 1981. |
[4] |
R. Johnson, R. Obaya, S. Novo, C. Núñez and R. Fabbri, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control, Developments in Mathematics 36, Springer, Switzerland, 2016.
doi: 10.1007/978-3-319-29025-6. |
[5] |
O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moskow, 1967 (Russian). English transl.: Transl. Math. Monographs, AMS, Providence, 1968. |
[6] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications Vol. 16, Birkhäuser, Basel, Boston, Berlin, 1995.
doi: 10.1007/978-3-0348-9234-6. |
[7] |
R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc. 321 (1990), 1-44.
doi: 10.2307/2001590. |
[8] |
R. H. Martin and H. L. Smith,
Reaction-diffusion systems with time delays: Monotonicity, invariance, comparison and convergence, J. Reine Angew. Math., 413 (1991), 1-35.
|
[9] |
J. Mierczyński and W. Shen, Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evol. Equ., 4 (2004), 371-390.
doi: 10.1007/s00028-004-0160-0. |
[10] |
S. Novo, C. Núñez, R. Obaya and A. M. Sanz,
Skew-product semiflows for non-autonomous partial functional differential equations with delay, Discrete Continuous Dynam. Systems - A, 34 (2014), 4291-4321.
doi: 10.3934/dcds.2014.34.4291. |
[11] |
S. Novo, R. Obaya and A. M. Sanz, Topological dynamics for monotone skew-product semiflows with applications, J. Dynamics Differential Equations, 25 (2013), 1201-1231.
doi: 10.1007/s10884-013-9337-y. |
[12] |
S. Novo, R. Obaya and A. M. Sanz,
Uniform persistence and upper Lyapunov exponents for monotone skew-product semiflows, Nonlinearity, 26 (2013), 2409-2440.
doi: 10.1088/0951-7715/26/9/2409. |
[13] |
C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows Ⅱ: Two-dimensional systems of differential equations, J. Differential Equations, 248 (2010), 1899-1925.
doi: 10.1016/j.jde.2009.12.006. |
[14] |
R. Obaya and A. M. Sanz, Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems, J. Differential Equations, 261 (2016), 4135-4163.
doi: 10.1016/j.jde.2016.06.019. |
[15] |
R. Obaya and A. M. Sanz, Is uniform persistence a robust property in almost periodic models? A well-behaved family: almost periodic Nicholson systems, Nonlinearity, 31 (2018), 388-413.
doi: 10.1088/1361-6544/aa92e7. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations, 5 (1993), 279-303.
doi: 10.1007/BF01053163. |
[18] |
R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.
doi: 10.1016/0022-0396(78)90057-8. |
[19] |
R. J. Sacker and G. R. Sell,
Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67.
doi: 10.1006/jdeq.1994.1113. |
[20] |
W. Shen and Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Mem. Amer. Math. Soc., 647, Amer. Math. Soc., Providence, 1998.
doi: 10.1090/memo/0647. |
[21] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, 1995. |
[22] |
C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc., 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[23] |
C. C. Travis and G. F. Webb, Existence, stability, and compactness in the $\alpha$-norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143.
doi: 10.2307/1998809. |
[24] |
J. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Mathematical Sciences 119, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[1] |
Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291 |
[2] |
Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915 |
[3] |
Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081 |
[4] |
Paul L. Salceanu. Robust uniform persistence for structured models of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021258 |
[5] |
P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883 |
[6] |
Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261 |
[7] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[8] |
Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827 |
[9] |
Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 |
[10] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[11] |
Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653 |
[12] |
Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure and Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551 |
[13] |
Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873 |
[14] |
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 |
[15] |
Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395 |
[16] |
Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227 |
[17] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[18] |
Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 |
[19] |
Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169 |
[20] |
Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]