We characterize when the classical first and second kind of periodic orbits of the planar circular restricted $ 3 $–body problem obtained by Poincaré, can be extended to perturbed planar circular restricted $ 3 $–body problems. We put special emphasis when the perturbed forces are due to zonal harmonic or to a solar sail.
Citation: |
[1] |
E. I. Abouelmagd, M. S. Alhothuali, J. L. G. Guirao and H. M. Malaikah, The effect of zonal harmonic coefficients in the framework of the restricted three-body problem, Adv. Space Res., 55 (2015), 1660-1672.
doi: 10.1016/j.asr.2014.12.030.![]() ![]() ![]() |
[2] |
E. I. Abouelmagd, Existence and stability of triangular points in the restricted three-body problem with numerical applications, Astrophys Space Sci., 342 (2012), 45-53.
doi: 10.1007/s10509-012-1162-y.![]() ![]() |
[3] |
E. I. Abouelmagd and J. L. G. Guirao, On the perturbed restricted three-body problem, Applied Mathematics and Nonlinear Sciences, 1 (2016), 123-144.
doi: 10.21042/AMNS.2016.1.00010.![]() ![]() |
[4] |
E. I. Abouelmagd, J. L. G. Guirao and A. Mostafa, Numerical integration of the restricted three-body problem with Lie series, Astrophys Space Sci., 354 (2014), 369-378.
doi: 10.1007/s10509-014-2107-4.![]() ![]() |
[5] |
M. Alvarez and J. Llibre, Heteroclinic orbits and Bernoulli shift for the elliptic collision restricted three–body problem, Archive for Rational Mechanics and Analysis, 156 (2001), 317-357.
doi: 10.1007/s002050100116.![]() ![]() ![]() |
[6] |
D. Bancelin, D. Hestroffer and W. Thuillot, Numerical integration of dynamical systems with Lie series relativistic acceleration and nongravitational forces, Celest. Mech. Dyn. Astron., 112 (2012), 221-234.
doi: 10.1007/s10569-011-9393-8.![]() ![]() ![]() |
[7] |
R. B. Barrar, Existence of periodic orbits of second kind in the restricted problem of three bodies, Astro. J., 70 (1965), 3-4.
doi: 10.1086/109672.![]() ![]() ![]() |
[8] |
E. Belbruno, J. Llibre and M. Ollé, On the families of periodic orbits of the circular restricted three–body problem which bifurcate from the Sitnikov problem, Celest. Mech. Dyn. Astron., 60 (1994), 99-129.
doi: 10.1007/BF00693095.![]() ![]() ![]() |
[9] |
G. D. Birkhoff, Dynamical System, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX American Mathematical Society, Providence, R.I., 1966.
![]() ![]() |
[10] |
J. Candy and W. Rozmus, A symplectic integration algorithm for separable Hamiltonian functions, J. Comp. Physiol., 92 (1991), 230-256.
doi: 10.1016/0021-9991(91)90299-Z.![]() ![]() ![]() |
[11] |
J. R. Cash and A. H. Karp, A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides, ACM Trans. Math. Softw., 16 (1990), 201-222.
doi: 10.1145/79505.79507.![]() ![]() ![]() |
[12] |
J. E. Chambers, A hybrid symplectic integrator that permits close encounters between massive bodies, Mon. Not. R. Astron. Soc., 304 (1999), 793-799.
doi: 10.1046/j.1365-8711.1999.02379.x.![]() ![]() |
[13] |
M. Corbera and J. Llibre, Periodic orbits of the Sitnikov problem via a Poincaré map, Celest. Mech. Dyn. Astron., 77 (2000), 273-303.
doi: 10.1023/A:1011117003713.![]() ![]() ![]() |
[14] |
M. Corbera and J. Llibre, On symmetric periodic orbits of the elliptic Sitnikov problem via the analytic continuation method, Contemporary Mathematics, 292 (2002), 91-127.
doi: 10.1090/conm/292/04918.![]() ![]() ![]() |
[15] |
M. Corbera and J. Llibre, Symmetric periodic orbits for the elliptical 3–body problem via continution method, Developments in Mathematical and Experimental Physics, Klauaer, Acod., 2003, 113–137.
![]() |
[16] |
M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem, Celest. Mech. Dyn. Astron., 86 (2003), 163-183.
doi: 10.1023/A:1024183003251.![]() ![]() ![]() |
[17] |
J. M. Cors and J. Llibre, The global flow of the hyperbolic restricted three–body problem, Archive for Rational Mech. and Anal., 131 (1995), 335-358.
doi: 10.1007/BF00380914.![]() ![]() ![]() |
[18] |
J. M. Cors and J. Llibre, Qualitative study of the hyperbolic collision restricted three–body problem, Nonlinearity, 9 (1996), 1299-1316.
doi: 10.1088/0951-7715/9/5/011.![]() ![]() ![]() |
[19] |
J. M. Cors and J. Llibre, Qualitative study of the parabolic collision restricted three–body problem, Contemporary Math., 198 (1996), 1-19.
doi: 10.1090/conm/198/02485.![]() ![]() ![]() |
[20] |
J. M. Cors and J. Llibre, The global flow of the parabolic restricted three–body problem, Celest. Mech. Dyn. Astron., 90 (2004), 13-33.
doi: 10.1007/s10569-004-4917-0.![]() ![]() ![]() |
[21] |
M. Cuntz, S-type and p-type habitability in stellar binary systems: A comprehensive approach. i. method and applications, Astrophysical Journal, 780 (2014), 14.
doi: 10.1088/0004-637X/780/1/14.![]() ![]() |
[22] |
R. Dvorak, C. Froeschle and C. Froeschle, Stability of outer planetary orbits (p-types) in binaries, Astrophysics, 226 (1989), 335-342.
![]() |
[23] |
S. Eggl and R. Dvorak, An introduction to common numerical integration codes used in dynamical astronomy, In: Souchay, J., Dvorak, R. (eds.) Lecture Notes in Physics, vol. 790, Springer, Berlin, 2010,431–480.
doi: 10.1007/978-3-642-04458-8_9.![]() ![]() |
[24] |
S. Eggl, E. Pilat-Lohinger, N. Georgakarakos, M. Gyergyovits and B. Funk, An analytic method to determine habitable zones for s-type planetary orbits in binary star systems, Astrophysical J., 752 (2012), 74.
doi: 10.1088/0004-637X/752/1/74.![]() ![]() |
[25] |
S. M. Elshaboury, E. I. Abouelmagd, V. S. Kalantonis and E. A. Perdios, The planar restricted three–body problem when both primaries are triaxial rigid bodies: Equilibrium points and periodic orbits, Astrophys. Space Sci., 361 (2016), Paper No. 315, 18 pp.
doi: 10.1007/s10509-016-2894-x.![]() ![]() ![]() |
[26] |
G. Gómez, J. Llibre, R. Martínez and C. Simó, Dynamics and Mission Design Near Libration Points. Vol. I Fundamentals: The case of collinear libration points, World Scientific Monograph Series in Mathematics, Vol. 2, World Scientific, Singapore, 2001.
doi: 10.1142/9789812810632_bmatter.![]() ![]() ![]() |
[27] |
G. Gómez, J. Llibre, R. Martínez and C. Simó, Dynamics and Mission Design Near Libration Points. Vol. II Fundamentals: The case of triangular libration points, World Scientific Monograph Series in Mathematics, Vol. 3, World Scientific, Singapore, 2001.
![]() ![]() |
[28] |
J. D. Hadjidemetriou, The continuation of Periodic orbits form the restricted to the general three–body problem, Celest. Mech. Dyn. Astron., 12 (1975), 155-174.
doi: 10.1007/BF01230209.![]() ![]() ![]() |
[29] |
A. Hanslmeier and R. Dvorak, Numerical integration with Lie series, Astron. Astrophys., 132 (1984), 203-207.
![]() ![]() |
[30] |
L. Kaltenegger and N. Haghighipour, Calculating the habitable zone of binary star systems. Ⅰ. s-type binaries, Astrophysical J., 777 (2013), 165.
doi: 10.1088/0004-637X/777/2/165.![]() ![]() |
[31] |
J. Llibre, On the restricted three–body problem when the mass parameter is small, Celestial Mechanics, 28 (1982), 83-105.
doi: 10.1007/BF01230662.![]() ![]() ![]() |
[32] |
J. Llibre and M. Ollé, The motion of Saturn coorbital satellites in the restricted three–body problem, Astronomy and Astrophysics, 378 (2001), 1087-1099.
doi: 10.1051/0004-6361:20011274.![]() ![]() |
[33] |
J. Llibre and R. Ortega, On the families of periodic orbits of the Sitnikov problem, SIAM J. of Applied Dynamical Systems, 7 (2008), 561-576.
doi: 10.1137/070695253.![]() ![]() ![]() |
[34] |
J. Llibre and C. Piñol, On the elliptic restricted three–body problem, Celest. Mech. Dyn. Astron., 48 (1990), 319-345.
doi: 10.1007/BF00049388.![]() ![]() ![]() |
[35] |
J. Llibre and C. Stoica, Comet- and Hill-type periodic orbits in restricted (N+1)-body problems, J. Differential Equations, 250 (2010), 1747-1766.
doi: 10.1016/j.jde.2010.08.005.![]() ![]() ![]() |
[36] |
J. Llibre and D. G. Saari, Periodic orbits for the planar Newtonian three–body problem coming from the elliptical restricted three–body problems, Trans. Amer. Math. Soc., 347 (1995), 3017-3030.
doi: 10.1090/S0002-9947-1995-1297534-X.![]() ![]() ![]() |
[37] |
J. Llibre and C. Simó, Oscillatory solution in the planar restricted three body problem, Math. Annalen, 248 (1980), 153-184.
doi: 10.1007/BF01421955.![]() ![]() ![]() |
[38] |
C. R. McInnes, A. J. C. McDonald, J. F. L. Simmons and E. W. MacDonaldg, Solar sail parking in restricted three-body systems, J. Guid. Control Dyn., 17 (1994), 399-406.
doi: 10.2514/3.21211.![]() ![]() |
[39] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-body Problem, Second edition. Applied Mathematical Sciences, 90, Springer, New York, 2009.
doi: 10.1007/978-0-387-09724-4.![]() ![]() ![]() |
[40] |
C. D. Murray and S. F. Dermott, Solar System Dynamics, Cambridge University Press, 1999.
![]() ![]() |
[41] |
H. Poincaré, Leçons de Mécanique Céleste, Librairie Scientifique et Technique Albert Blanchard, Paris, 1987.
![]() ![]() |
[42] |
H. Poincaré, Les Méthodes Nouvelles de la Mécanique Céleste, Vol. 1, 1892; Vol. 2, 1983; Vol. 3, 1899; Gauthier-Villars, Paris. Reprinted by Dover, New York, 1957.
![]() |
[43] |
F. J. T. Salazar, C. R. McInnes and O. C. Winter, Periodic orbits for space-based reflectors in the circular restricted three–body problem, Celest. Mech. Dyn. Astron., 128 (2017), 95-113.
doi: 10.1007/s10569-016-9739-3.![]() ![]() ![]() |
[44] |
R. K. Sharma, The linear stability of libration points of the photogravitational restricted three-body problem when the smaller primary is an oblate spheroid, Astrophys. Space Sci., 135 (1987), 271-281.
![]() |
[45] |
S. Sternberg, Celestial mechanics, Part Ⅱ, W. A. Benjamin, Inc, New York. 1969.
![]() |
[46] |
P. Verrier and T. Waters, Families of periodic orbits for solar sails in the CRBTP, M. Macdonald(ed), Advances in Solar Sailing, Springer Praxis Books, Springer–Verlag Berlin Heidelberg, 2014, 871–884.
doi: 10.1007/978-3-642-34907-2_52.![]() ![]() |