
-
Previous Article
I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems
- DCDS-B Home
- This Issue
-
Next Article
Robustness of dynamically gradient multivalued dynamical systems
Some remarks on an environmental defensive expenditures model
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain |
2. | Departament of Engineering, University Niccolò Cusano, Via Don Carlo Gnocchi, 3 00166, Roma, Italy |
3. | Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121, Ancona (AN), Italy |
In this paper, we consider the environmental defensive expenditures model with delay proposed by Russu in [
References:
[1] |
A. Antoci, S. Borghesi and P. Russu,
Environmental defensive expenditures, expectations and growth, Population and Environment, 27 (2005), 227-244.
doi: 10.1007/s11111-006-0019-0. |
[2] |
R. Becker,
Intergenerational equity: The capital-environment trade-off, J. Environ. Econ. Manage., 9 (1982), 165-185.
doi: 10.1016/0095-0696(82)90020-1. |
[3] |
T. Caraballo, J. Real and L. Shaikhet,
Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145.
doi: 10.1016/j.jmaa.2007.01.038. |
[4] |
T. Caraballo, X. Han and P. E. Kloeden,
Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199.
doi: 10.1137/14099930X. |
[5] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[6] |
G. Cazzavillan and I. Musu, Transitional dynamics and uniqueness of the balanced-growth path in a simple model of endogenous growth with an environmental asset, FEEM Working Paper, 2001 (2001), Paper No 65, 12pp.
doi: 10.2139/ssrn.286694. |
[7] |
M. Dell'Era and M. Sodini, Closed form solution for dynamic of sustainable tourism., University Library of Munich, Germany, 2009. |
[8] |
P. F. J. Eagles, S. F. McCool and C. D. Haynes, Sustainable Tourism in Protected Areas. United Nations Environment Programme, World Tourism Organization and IUCN, The World Conservation Union, 2002. |
[9] |
M. Ferrara, Green economy, sustainable growth theory and demographic dynamics: a modern theoretical approach, Proceedings of the 3rd International Conference on Applied Mathematics, Simulation, Modelling, Circuits, Systems and Signals, pages, 11-12, 2009. World Scientific and Engineering Academy and Society (WSEAS). |
[10] |
M. Ferrara and L. Guerrini,
Economic development and sustainability in a two-sector model with variable population growth rate, Journal of Mathematical Sciences: Advances and Applications, 1 (2008), 323-339.
|
[11] |
J. K. Hale and S. V. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[12] |
B. Hassard, D. Kazarino and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981. |
[13] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/176. |
[14] |
V. Kolmanovskii and L. Shaikhet, General method of Lyapunov functionals construction for stability investigation of stochastic difference equations, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., World Sci. Publ., River Edge, NJ, 4 (1995), 397-439.
doi: 10.1142/9789812796417_0026. |
[15] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993. |
[16] |
P. Russu,
Hopf bifurcation in a environmental defensive expenditures model with time delay, Chaos, Solitons and Fractals, 42 (2009), 3147-3159.
doi: 10.1016/j.chaos.2009.04.021. |
[17] |
G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, No. 33. Van Nostrand Reinhold Co., London, 1971. |
show all references
References:
[1] |
A. Antoci, S. Borghesi and P. Russu,
Environmental defensive expenditures, expectations and growth, Population and Environment, 27 (2005), 227-244.
doi: 10.1007/s11111-006-0019-0. |
[2] |
R. Becker,
Intergenerational equity: The capital-environment trade-off, J. Environ. Econ. Manage., 9 (1982), 165-185.
doi: 10.1016/0095-0696(82)90020-1. |
[3] |
T. Caraballo, J. Real and L. Shaikhet,
Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130-1145.
doi: 10.1016/j.jmaa.2007.01.038. |
[4] |
T. Caraballo, X. Han and P. E. Kloeden,
Nonautonomous chemostats with variable delays, SIAM J. Math. Anal., 47 (2015), 2178-2199.
doi: 10.1137/14099930X. |
[5] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[6] |
G. Cazzavillan and I. Musu, Transitional dynamics and uniqueness of the balanced-growth path in a simple model of endogenous growth with an environmental asset, FEEM Working Paper, 2001 (2001), Paper No 65, 12pp.
doi: 10.2139/ssrn.286694. |
[7] |
M. Dell'Era and M. Sodini, Closed form solution for dynamic of sustainable tourism., University Library of Munich, Germany, 2009. |
[8] |
P. F. J. Eagles, S. F. McCool and C. D. Haynes, Sustainable Tourism in Protected Areas. United Nations Environment Programme, World Tourism Organization and IUCN, The World Conservation Union, 2002. |
[9] |
M. Ferrara, Green economy, sustainable growth theory and demographic dynamics: a modern theoretical approach, Proceedings of the 3rd International Conference on Applied Mathematics, Simulation, Modelling, Circuits, Systems and Signals, pages, 11-12, 2009. World Scientific and Engineering Academy and Society (WSEAS). |
[10] |
M. Ferrara and L. Guerrini,
Economic development and sustainability in a two-sector model with variable population growth rate, Journal of Mathematical Sciences: Advances and Applications, 1 (2008), 323-339.
|
[11] |
J. K. Hale and S. V. Verduyn Lunel, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[12] |
B. Hassard, D. Kazarino and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge: Cambridge University Press, 1981. |
[13] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011.
doi: 10.1090/surv/176. |
[14] |
V. Kolmanovskii and L. Shaikhet, General method of Lyapunov functionals construction for stability investigation of stochastic difference equations, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., World Sci. Publ., River Edge, NJ, 4 (1995), 397-439.
doi: 10.1142/9789812796417_0026. |
[15] |
Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191. Academic Press, Inc., Boston, MA, 1993. |
[16] |
P. Russu,
Hopf bifurcation in a environmental defensive expenditures model with time delay, Chaos, Solitons and Fractals, 42 (2009), 3147-3159.
doi: 10.1016/j.chaos.2009.04.021. |
[17] |
G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold Mathematical Studies, No. 33. Van Nostrand Reinhold Co., London, 1971. |






[1] |
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 |
[2] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[3] |
Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633 |
[4] |
Xiuli Sun, Rong Yuan, Yunfei Lv. Global Hopf bifurcations of neutral functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 667-700. doi: 10.3934/dcdsb.2018038 |
[5] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[6] |
Roman Srzednicki. A theorem on chaotic dynamics and its application to differential delay equations. Conference Publications, 2001, 2001 (Special) : 362-365. doi: 10.3934/proc.2001.2001.362 |
[7] |
Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451 |
[8] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[9] |
Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044 |
[10] |
Mohan Mallick, Sarath Sasi, R. Shivaji, S. Sundar. Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2022, 21 (2) : 705-726. doi: 10.3934/cpaa.2021195 |
[11] |
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 |
[12] |
Gennadi M. Henkin, Victor M. Polterovich. A difference-differential analogue of the Burgers equations and some models of economic development. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 697-728. doi: 10.3934/dcds.1999.5.697 |
[13] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[14] |
Evelyn Sander, E. Barreto, S.J. Schiff, P. So. Dynamics of noninvertibility in delay equations. Conference Publications, 2005, 2005 (Special) : 768-777. doi: 10.3934/proc.2005.2005.768 |
[15] |
Andrea Caravaggio, Luca Gori, Mauro Sodini. Population dynamics and economic development. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5827-5848. doi: 10.3934/dcdsb.2021178 |
[16] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[17] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[18] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[19] |
Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503 |
[20] |
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]