March  2019, 24(3): 1095-1113. doi: 10.3934/dcdsb.2019008

I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems

State University of Moldova, Faculty of Mathematics and Informatics, Department of Mathematics, A. Mateevich Street 60, Chișinău, MD 2009, Moldova

* Corresponding author: David Cheban

Received  November 2017 Revised  January 2018 Published  January 2019

In this paper we study the problem of Levitan/Bohr almost periodicity of solutions for dissipative differential equations (Bronshtein's conjecture for Bohr almost periodic case). We give a positive answer to this conjecture for monotone Levitan/Bohr almost periodic systems of differential/difference equations.

Citation: David Cheban. I. U. Bronshtein's conjecture for monotone nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1095-1113. doi: 10.3934/dcdsb.2019008
References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

V. M. Bebutov, On the shift dynamical systems on the space of continuous functions, Bull. of Inst. of Math. of Moscow University, 2 (1940), 1-65. Google Scholar

[3]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, 1947. ii+114 pp. Google Scholar

[4]

I. U. Bronsteyn, Extensions of Minimal Transformation Group, Translated from the Russian. Martinus Nijhoff Publishers, The Hague, 1979. Google Scholar

[5]

T. Caraballo and D. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition.I, J. Differential Equations, 246 (2009), 108-128. doi: 10.1016/j.jde.2008.04.001. Google Scholar

[6]

D. N. Cheban, On the comparability of the points of dynamical systems with regard to the character of recurrence property in the limit, Mathematical Sciences, issue N1, Kishinev, "Shtiintsa", 1977, 66–71.Google Scholar

[7]

D. N. Cheban, Global pullback atttactors of c-analytic nonautonomous dynamical systems, Stochastics and Dynamics, 1 (2001), 511-535. doi: 10.1142/S0219493701000254. Google Scholar

[8]

D. N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi Publishing Corporation, New York, 2009, ix+186 pp. doi: 10.1155/9789774540998. Google Scholar

[9]

D. N. Cheban, Global Attractors of Nonautonomous Dynamical and Control Systems, 2nd Edition, Interdisciplinary Mathematical Sciences, vol.18, River Edge, NJ: World Scientific, 2015, xxv+589 pp. doi: 10.1142/9297. Google Scholar

[10]

D. Cheban and Z. Liu, Bohr/Levitan Almost Periodic, Almost Automorphic, Recurrent and Poisson Stable Solutions of Monotone Differential Equations, SCIENCE CHINA Mathematics, Accepted 2018, 28 pages.Google Scholar

[11]

B. P. Demidovich, Lectures on Mathematical Theory of Stability, Moscow, "Nauka", 1967. (in Russian) Google Scholar

[12]

A. M. Fink, Almost Periodic Differential Equations, Lecture notes in Mathematics, Vol. 377, Springer-Verlag, 1974. Google Scholar

[13]

A. M. Fink and P. O. Fredericson, Ultimate boundedness does not imply almost periodicity, Journal of Differential Equations, 9 (1971), 280-284. doi: 10.1016/0022-0396(71)90081-7. Google Scholar

[14]

F. Flandoli and B. Schmalfuß, Random Attractors for the Stochastic 3D Navier–Stokes Equation with Multiplicative White Noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar

[15]

M. Hirsch and H. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. Ⅱ, 239–357, Elsevier B. V., Amsterdam, 2005. Google Scholar

[16]

D. Husemoller, Fibre Bundles, Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994. xx+353 pp. doi: 10.1007/978-1-4757-2261-1. Google Scholar

[17]

J. Jiang and X. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications, J. Reine Angew. Math., 589 (2005), 21-55. doi: 10.1515/crll.2005.2005.589.21. Google Scholar

[18] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Moscow State University Press, Moscow, 1978. Google Scholar
[19]

V. A. Pliss, Nonlocal Problems in the Theory of Oscilations, Nauka, Moscow, 1964. (in Russian) [English translation: Nonlocal Problems in the Theory of Oscilations, Academic Press, 1966,367 p.] Google Scholar

[20]

G. R. Sell, Non-autonomous differential equations and topological dynamics, I. The basic theory, Trans. Amer. Math. Soc., 127 (1967), 241-262. doi: 10.2307/1994645. Google Scholar

[21]

G. R. Sell, Non-autonomous differential equations and topological dynamics, II. Limiting equations, Trans. Amer. Math. Soc., 127 (1967), 263-283. doi: 10.1090/S0002-9947-1967-0212314-4. Google Scholar

[22]

G. R. Sell, Lectures on Topological Dynamics and Differential Equations, volume 2 of Van Nostrand Reinhold Math. Studies, Van Nostrand–Reinbold, London, 1971. Google Scholar

[23]

B. A. Shcherbakov, Classification of Poisson-stable motions, Pseudo-recurrent motions, Dokl. Akad. Nauk SSSR, 146 (1962), 322-324. Google Scholar

[24]

B. A. Shcherbakov, On classes of Poisson stability of motion, Pseudorecurrent motions, Bul. Akad. Stiince RSS Moldoven., 1963 (1963), 58-72. Google Scholar

[25]

B. A. Shcherbakov, Constituent classes of Poisson-stable motions, Sibirsk. Mat. Zh., 5 (1964), 1397-1417. Google Scholar

[26]

B. A. Shcherbakov, Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Ştiinţa, Chişinău, 1972,231 p.(in Russian) Google Scholar

[27]

B. A. Shcherbakov, The compatible recurrence of the bounded solutions of first order differential equations, Differencial'nye Uravnenija, 10 (1974), 270-275. Google Scholar

[28]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differencial?nye Uravnenija, 11 (1975), 1246-1255. Google Scholar

[29]

B. A. Shcherbakov, Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Ştiinţa, Chişinău, 1985,147 pp. (in Russian) Google Scholar

[30]

K. S. Sibirsky, Introduction to Topological Dynamics, Kishinev, RIA AN MSSR, 1970,144 p. (in Russian). [English translation: Introduction to Topological Dynamics. Noordhoff, Leyden, 1975] Google Scholar

[31]

H. L. Smith, Monotone semiflows generated by functional differential equations, Journal of Differential Equations, 66 (1987), 420-442. doi: 10.1016/0022-0396(87)90027-1. Google Scholar

[32]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Series: Mathematical surveys and monographs, Volume 41., American Mathematical Society. Providence, Rhode Island, 1995, x+174 p. Google Scholar

[33]

Y. Wang and X.-Q. Zhao, Global convergence in monotone and uniformly stable re- current skew-product semiflows, Infinite Dimensional Dynamical Systems, 391–406, Fields Inst. Commun., 64, Springer, New York, 2013. doi: 10.1007/978-1-4614-4523-4_15. Google Scholar

[34]

T. Yoshizawa, Note on the Boundedness and the Ultimate Boundedness of Solutions $x'=f(t,x)$, Memoirs of the College of Science. University of Kyoto, Serie A, 29 (1955), 275-291. doi: 10.1215/kjm/1250777188. Google Scholar

[35]

T. Yoshizawa, Lyapunov's function and boundedness of solutions, Funkcialaj Ekvacioj, 2 (1959), 95-142. Google Scholar

[36]

V. V. Zhikov, On Problem of Existence of Almost Periodic Solutions of Differential and Operator Equations, Nauchnye Trudy VVPI, Matematika, 8 (1969), 94-188. Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. doi: 10.1007/978-3-662-12878-7. Google Scholar

[2]

V. M. Bebutov, On the shift dynamical systems on the space of continuous functions, Bull. of Inst. of Math. of Moscow University, 2 (1940), 1-65. Google Scholar

[3]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, 1947. ii+114 pp. Google Scholar

[4]

I. U. Bronsteyn, Extensions of Minimal Transformation Group, Translated from the Russian. Martinus Nijhoff Publishers, The Hague, 1979. Google Scholar

[5]

T. Caraballo and D. Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition.I, J. Differential Equations, 246 (2009), 108-128. doi: 10.1016/j.jde.2008.04.001. Google Scholar

[6]

D. N. Cheban, On the comparability of the points of dynamical systems with regard to the character of recurrence property in the limit, Mathematical Sciences, issue N1, Kishinev, "Shtiintsa", 1977, 66–71.Google Scholar

[7]

D. N. Cheban, Global pullback atttactors of c-analytic nonautonomous dynamical systems, Stochastics and Dynamics, 1 (2001), 511-535. doi: 10.1142/S0219493701000254. Google Scholar

[8]

D. N. Cheban, Asymptotically Almost Periodic Solutions of Differential Equations, Hindawi Publishing Corporation, New York, 2009, ix+186 pp. doi: 10.1155/9789774540998. Google Scholar

[9]

D. N. Cheban, Global Attractors of Nonautonomous Dynamical and Control Systems, 2nd Edition, Interdisciplinary Mathematical Sciences, vol.18, River Edge, NJ: World Scientific, 2015, xxv+589 pp. doi: 10.1142/9297. Google Scholar

[10]

D. Cheban and Z. Liu, Bohr/Levitan Almost Periodic, Almost Automorphic, Recurrent and Poisson Stable Solutions of Monotone Differential Equations, SCIENCE CHINA Mathematics, Accepted 2018, 28 pages.Google Scholar

[11]

B. P. Demidovich, Lectures on Mathematical Theory of Stability, Moscow, "Nauka", 1967. (in Russian) Google Scholar

[12]

A. M. Fink, Almost Periodic Differential Equations, Lecture notes in Mathematics, Vol. 377, Springer-Verlag, 1974. Google Scholar

[13]

A. M. Fink and P. O. Fredericson, Ultimate boundedness does not imply almost periodicity, Journal of Differential Equations, 9 (1971), 280-284. doi: 10.1016/0022-0396(71)90081-7. Google Scholar

[14]

F. Flandoli and B. Schmalfuß, Random Attractors for the Stochastic 3D Navier–Stokes Equation with Multiplicative White Noise, Stochastics and Stochastics Reports, 59 (1996), 21-45. doi: 10.1080/17442509608834083. Google Scholar

[15]

M. Hirsch and H. Smith, Monotone dynamical systems, Handbook of Differential Equations: Ordinary Differential Equations, Vol. Ⅱ, 239–357, Elsevier B. V., Amsterdam, 2005. Google Scholar

[16]

D. Husemoller, Fibre Bundles, Third edition. Graduate Texts in Mathematics, 20. Springer-Verlag, New York, 1994. xx+353 pp. doi: 10.1007/978-1-4757-2261-1. Google Scholar

[17]

J. Jiang and X. Zhao, Convergence in monotone and uniformly stable skew-product semiflows with applications, J. Reine Angew. Math., 589 (2005), 21-55. doi: 10.1515/crll.2005.2005.589.21. Google Scholar

[18] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Moscow State University Press, Moscow, 1978. Google Scholar
[19]

V. A. Pliss, Nonlocal Problems in the Theory of Oscilations, Nauka, Moscow, 1964. (in Russian) [English translation: Nonlocal Problems in the Theory of Oscilations, Academic Press, 1966,367 p.] Google Scholar

[20]

G. R. Sell, Non-autonomous differential equations and topological dynamics, I. The basic theory, Trans. Amer. Math. Soc., 127 (1967), 241-262. doi: 10.2307/1994645. Google Scholar

[21]

G. R. Sell, Non-autonomous differential equations and topological dynamics, II. Limiting equations, Trans. Amer. Math. Soc., 127 (1967), 263-283. doi: 10.1090/S0002-9947-1967-0212314-4. Google Scholar

[22]

G. R. Sell, Lectures on Topological Dynamics and Differential Equations, volume 2 of Van Nostrand Reinhold Math. Studies, Van Nostrand–Reinbold, London, 1971. Google Scholar

[23]

B. A. Shcherbakov, Classification of Poisson-stable motions, Pseudo-recurrent motions, Dokl. Akad. Nauk SSSR, 146 (1962), 322-324. Google Scholar

[24]

B. A. Shcherbakov, On classes of Poisson stability of motion, Pseudorecurrent motions, Bul. Akad. Stiince RSS Moldoven., 1963 (1963), 58-72. Google Scholar

[25]

B. A. Shcherbakov, Constituent classes of Poisson-stable motions, Sibirsk. Mat. Zh., 5 (1964), 1397-1417. Google Scholar

[26]

B. A. Shcherbakov, Topologic Dynamics and Poisson Stability of Solutions of Differential Equations, Ştiinţa, Chişinău, 1972,231 p.(in Russian) Google Scholar

[27]

B. A. Shcherbakov, The compatible recurrence of the bounded solutions of first order differential equations, Differencial'nye Uravnenija, 10 (1974), 270-275. Google Scholar

[28]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differencial?nye Uravnenija, 11 (1975), 1246-1255. Google Scholar

[29]

B. A. Shcherbakov, Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations, Ştiinţa, Chişinău, 1985,147 pp. (in Russian) Google Scholar

[30]

K. S. Sibirsky, Introduction to Topological Dynamics, Kishinev, RIA AN MSSR, 1970,144 p. (in Russian). [English translation: Introduction to Topological Dynamics. Noordhoff, Leyden, 1975] Google Scholar

[31]

H. L. Smith, Monotone semiflows generated by functional differential equations, Journal of Differential Equations, 66 (1987), 420-442. doi: 10.1016/0022-0396(87)90027-1. Google Scholar

[32]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Series: Mathematical surveys and monographs, Volume 41., American Mathematical Society. Providence, Rhode Island, 1995, x+174 p. Google Scholar

[33]

Y. Wang and X.-Q. Zhao, Global convergence in monotone and uniformly stable re- current skew-product semiflows, Infinite Dimensional Dynamical Systems, 391–406, Fields Inst. Commun., 64, Springer, New York, 2013. doi: 10.1007/978-1-4614-4523-4_15. Google Scholar

[34]

T. Yoshizawa, Note on the Boundedness and the Ultimate Boundedness of Solutions $x'=f(t,x)$, Memoirs of the College of Science. University of Kyoto, Serie A, 29 (1955), 275-291. doi: 10.1215/kjm/1250777188. Google Scholar

[35]

T. Yoshizawa, Lyapunov's function and boundedness of solutions, Funkcialaj Ekvacioj, 2 (1959), 95-142. Google Scholar

[36]

V. V. Zhikov, On Problem of Existence of Almost Periodic Solutions of Differential and Operator Equations, Nauchnye Trudy VVPI, Matematika, 8 (1969), 94-188. Google Scholar

[1]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[2]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[3]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[4]

Gaston Mandata N ' Guerekata. Remarks on almost automorphic differential equations. Conference Publications, 2001, 2001 (Special) : 276-279. doi: 10.3934/proc.2001.2001.276

[5]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[6]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[7]

Aníbal Coronel, Christopher Maulén, Manuel Pinto, Daniel Sepúlveda. Almost automorphic delayed differential equations and Lasota-Wazewska model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1959-1977. doi: 10.3934/dcds.2017083

[8]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[9]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019113

[10]

Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703

[11]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[12]

Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51

[13]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[14]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[15]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[16]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[17]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[18]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[19]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

[20]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (61)
  • HTML views (82)
  • Cited by (0)

Other articles
by authors

[Back to Top]