March  2019, 24(3): 1115-1142. doi: 10.3934/dcdsb.2019009

Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127051, Russian Federation

2. 

Voronezh State University, Universitetskaya sq. 1, Voronezh 394018, Russian Federation

3. 

University of Surrey, Department of Mathematics, Guildford, GU2 7XH, United Kingdom

* Corresponding author: V. V. Chepyzhov

To the blessed memory of Professor V. S. Melnik

Received  September 2017 Revised  March 2018 Published  January 2019

Fund Project: The research of VVC was supported by the Ministry of Education and Science of the Russian Federation (grant 14.Z50.31.0037). The work of AK and SZ was partially supported by the EPSRC grant EP/P024920/1 and the work of SZ was partially supported by the Russian Foundation for Basic Research (projects 17-01-00515 and 18-01-00524).

The paper gives a comprehensive study of Inertial Manifolds for hyperbolic relaxations of an abstract semilinear parabolic equation in a Hilbert space. A new scheme of constructing Inertial Manifolds for such type of problems is suggested and optimal spectral gap conditions which guarantee their existence are established. Moreover, the dependence of the constructed manifolds on the relaxation parameter in the case of the parabolic singular limit is also studied.

Bibliography: 38 titles.

Citation: Vladimir V. Chepyzhov, Anna Kostianko, Sergey Zelik. Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1115-1142. doi: 10.3934/dcdsb.2019009
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[2]

N. A. Chalkina, Sufficient condition for the existence of an inertial manifold for a hyperbolic equation with weak and strong dissipation, Russ. J. Math. Phys., 19 (2012), 11-20.  doi: 10.1134/S1061920812010025.  Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.  Google Scholar

[4]

V. V. ChepyzhovA. Yu. Goritsky and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russ. J. Math. Phys., 12 (2005), 17-39.   Google Scholar

[5]

V. V. Chepyzhov and A. Yu. Goritsky, Global integral manifolds with exponential tracking for nonautonomous equations, Russ. J. Math. Phys., 5 (1997), 9-28.   Google Scholar

[6]

V. V. Chepyzhov and A. Yu. Goritsky, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds, Sb. Math., 196 (2005), 23-50.  doi: 10.1070/SM2005v196n04ABEH000889.  Google Scholar

[7]

A. EdenS. V. Zelik and V. K. Kalantarov, Counterexamples to the regularity of Mané projections in the attractors theory, Russian Math. Surveys, 68 (2013), 199-226.  doi: 10.1070/rm2013v068n02abeh004828.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.  Google Scholar

[9]

P. FabrieC. GalushinskiA. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10 (2004), 211-238.  doi: 10.3934/dcds.2004.10.211.  Google Scholar

[10]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/1972), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[11]

C. FoiasG. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin, New York, 1981.  Google Scholar

[13]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin, New York, 1977.  Google Scholar

[14]

V. KalantarovA. Savstianov and S. Zelik, Attractors for Damped Quintic Wave Equations in Bounded Domains, Annales Henri Poincaré, 17 (2016), 2555-2584.  doi: 10.1007/s00023-016-0480-y.  Google Scholar

[15]

N. Koksch, Almost sharp conditions for the existence of smooth inertial manifolds, in: Equadiff 9: Conference on Differential Equations and their Applications : Proceedings, edited by Z. Dosla, J. Kuben, J. Vosmansky, Masaryk University, Brno, 1998,139–166. Google Scholar

[16]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions, Commun. Pure Appl. Anal., 16 (2017), 2357-2376.  doi: 10.3934/cpaa.2017116.  Google Scholar

[17]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: Periodic bundary conditins, Commun. Pure Appl. Anal., 17 (2018), 285-317.  doi: 10.3934/cpaa.2018017.  Google Scholar

[18]

A. Kostianko and S. Zelik, Spatio-Temporal Averaging and Inertial Manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions, in preparation. Google Scholar

[19]

A. Kostianko and S. Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Comm. Pure Appl. Anal., 14 (2015), 2069-2094.  doi: 10.3934/cpaa.2015.14.2069.  Google Scholar

[20]

A. Kostianko and S. Zelik, The Kwak transform and Inertial Manifolds Revisited, in preparation. Google Scholar

[21]

M. Kwak, Finite-dimensional inertial forms for 2D Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 927-981.  doi: 10.1512/iumj.1992.41.41051.  Google Scholar

[22]

J. Mallet-Paret and G. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1 (1988), 805-866.  doi: 10.1090/S0894-0347-1988-0943276-7.  Google Scholar

[23]

J. Mallet-ParetG. Sell and Z. Shao, Obstructions to the existence of normally hyperbolic inertial manifolds, Indiana Univ. Math. J., 42 (1993), 1027-1055.  doi: 10.1512/iumj.1993.42.42048.  Google Scholar

[24]

M. Miklavcic, A sharp condition for existence of an inertial manifold, J. Dynam.Differential Equations, 3 (1991), 437-456.  doi: 10.1007/BF01049741.  Google Scholar

[25]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations. Vol. Ⅳ, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[26]

X. Mora and J. Solá-Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in: Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), 187–210, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987.  Google Scholar

[27]

X. Mora and J. Solá-Morales, Inertial manifolds of damped semilinear wave equations. Attractors, inertial manifolds and their approximation, in: (Marseille-Luminy, 1987). RAIRO Model. Math. Anal. Numer., 23 (1989), 489–505. doi: 10.1051/m2an/1989230304891.  Google Scholar

[28]

J. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[29]

J. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.  Google Scholar

[30]

A. Romanov, Sharp estimates for the dimension of inertial manifolds for nonlinear parabolic equations, Russian Acad. Sci. Izv. Math., 43 (1994), 31-47.  doi: 10.1070/IM1994v043n01ABEH001557.  Google Scholar

[31]

A. Romanov, Three counterexamples in the theory of inertial manifolds, Math. Notes, 68 (2000), 378-385.  doi: 10.1007/BF02674562.  Google Scholar

[32]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[33]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[34]

R. Temam and S. Wang, Inertial forms of Navier-Stokes equations on the sphere, J. Funct. Anal., 117 (1993), 215-242.  doi: 10.1006/jfan.1993.1126.  Google Scholar

[35]

A. Yu. Goritskii and N. A. Chalkina, Inertial manifolds for weakly and strongly dissipative hyperbolic equations, J. Math. Sci., 197 (2014), 291-302.  doi: 10.1007/s10958-014-1715-4.  Google Scholar

[36]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Royal Soc. Edinburgh, 144A (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

[37]

S. Zelik, Asymptotic Regularity of Solutions of Singularly Perturbed Damped Wave Equations with Supercritical Nonlinearities, Discrete Contin. Dyn. Syst., 11 (2004), 351-392.  doi: 10.3934/dcds.2004.11.351.  Google Scholar

[38]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and J. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing Ⅲ. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis, Series: Advances in Mechanics and Mathematics, 27, Springer, Berlin, 2012. doi: 10.1007/978-3-642-28512-7.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[2]

N. A. Chalkina, Sufficient condition for the existence of an inertial manifold for a hyperbolic equation with weak and strong dissipation, Russ. J. Math. Phys., 19 (2012), 11-20.  doi: 10.1134/S1061920812010025.  Google Scholar

[3]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49. American Mathematical Society, Providence, RI, 2002.  Google Scholar

[4]

V. V. ChepyzhovA. Yu. Goritsky and M. I. Vishik, Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation, Russ. J. Math. Phys., 12 (2005), 17-39.   Google Scholar

[5]

V. V. Chepyzhov and A. Yu. Goritsky, Global integral manifolds with exponential tracking for nonautonomous equations, Russ. J. Math. Phys., 5 (1997), 9-28.   Google Scholar

[6]

V. V. Chepyzhov and A. Yu. Goritsky, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds, Sb. Math., 196 (2005), 23-50.  doi: 10.1070/SM2005v196n04ABEH000889.  Google Scholar

[7]

A. EdenS. V. Zelik and V. K. Kalantarov, Counterexamples to the regularity of Mané projections in the attractors theory, Russian Math. Surveys, 68 (2013), 199-226.  doi: 10.1070/rm2013v068n02abeh004828.  Google Scholar

[8]

K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 2000.  Google Scholar

[9]

P. FabrieC. GalushinskiA. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10 (2004), 211-238.  doi: 10.3934/dcds.2004.10.211.  Google Scholar

[10]

N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971/1972), 193-226.  doi: 10.1512/iumj.1972.21.21017.  Google Scholar

[11]

C. FoiasG. Sell and R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309-353.  doi: 10.1016/0022-0396(88)90110-6.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin, New York, 1981.  Google Scholar

[13]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, Vol. 583. Springer-Verlag, Berlin, New York, 1977.  Google Scholar

[14]

V. KalantarovA. Savstianov and S. Zelik, Attractors for Damped Quintic Wave Equations in Bounded Domains, Annales Henri Poincaré, 17 (2016), 2555-2584.  doi: 10.1007/s00023-016-0480-y.  Google Scholar

[15]

N. Koksch, Almost sharp conditions for the existence of smooth inertial manifolds, in: Equadiff 9: Conference on Differential Equations and their Applications : Proceedings, edited by Z. Dosla, J. Kuben, J. Vosmansky, Masaryk University, Brno, 1998,139–166. Google Scholar

[16]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions, Commun. Pure Appl. Anal., 16 (2017), 2357-2376.  doi: 10.3934/cpaa.2017116.  Google Scholar

[17]

A. Kostianko and S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: Periodic bundary conditins, Commun. Pure Appl. Anal., 17 (2018), 285-317.  doi: 10.3934/cpaa.2018017.  Google Scholar

[18]

A. Kostianko and S. Zelik, Spatio-Temporal Averaging and Inertial Manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions, in preparation. Google Scholar

[19]

A. Kostianko and S. Zelik, Inertial manifolds for the 3D Cahn-Hilliard equations with periodic boundary conditions, Comm. Pure Appl. Anal., 14 (2015), 2069-2094.  doi: 10.3934/cpaa.2015.14.2069.  Google Scholar

[20]

A. Kostianko and S. Zelik, The Kwak transform and Inertial Manifolds Revisited, in preparation. Google Scholar

[21]

M. Kwak, Finite-dimensional inertial forms for 2D Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 927-981.  doi: 10.1512/iumj.1992.41.41051.  Google Scholar

[22]

J. Mallet-Paret and G. Sell, Inertial manifolds for reaction-diffusion equations in higher space dimensions, J. Amer. Math. Soc., 1 (1988), 805-866.  doi: 10.1090/S0894-0347-1988-0943276-7.  Google Scholar

[23]

J. Mallet-ParetG. Sell and Z. Shao, Obstructions to the existence of normally hyperbolic inertial manifolds, Indiana Univ. Math. J., 42 (1993), 1027-1055.  doi: 10.1512/iumj.1993.42.42048.  Google Scholar

[24]

M. Miklavcic, A sharp condition for existence of an inertial manifold, J. Dynam.Differential Equations, 3 (1991), 437-456.  doi: 10.1007/BF01049741.  Google Scholar

[25]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations. Vol. Ⅳ, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008. doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[26]

X. Mora and J. Solá-Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in: Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), 187–210, NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 37, Springer, Berlin, 1987.  Google Scholar

[27]

X. Mora and J. Solá-Morales, Inertial manifolds of damped semilinear wave equations. Attractors, inertial manifolds and their approximation, in: (Marseille-Luminy, 1987). RAIRO Model. Math. Anal. Numer., 23 (1989), 489–505. doi: 10.1051/m2an/1989230304891.  Google Scholar

[28]

J. Robinson, Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[29]

J. Robinson, Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, 186. Cambridge University Press, Cambridge, 2011.  Google Scholar

[30]

A. Romanov, Sharp estimates for the dimension of inertial manifolds for nonlinear parabolic equations, Russian Acad. Sci. Izv. Math., 43 (1994), 31-47.  doi: 10.1070/IM1994v043n01ABEH001557.  Google Scholar

[31]

A. Romanov, Three counterexamples in the theory of inertial manifolds, Math. Notes, 68 (2000), 378-385.  doi: 10.1007/BF02674562.  Google Scholar

[32]

R. Rosa and R. Temam, Inertial manifolds and normal hyperbolicity, Acta Appl. Math., 45 (1996), 1-50.  doi: 10.1007/BF00047882.  Google Scholar

[33]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[34]

R. Temam and S. Wang, Inertial forms of Navier-Stokes equations on the sphere, J. Funct. Anal., 117 (1993), 215-242.  doi: 10.1006/jfan.1993.1126.  Google Scholar

[35]

A. Yu. Goritskii and N. A. Chalkina, Inertial manifolds for weakly and strongly dissipative hyperbolic equations, J. Math. Sci., 197 (2014), 291-302.  doi: 10.1007/s10958-014-1715-4.  Google Scholar

[36]

S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. Royal Soc. Edinburgh, 144A (2014), 1245-1327.  doi: 10.1017/S0308210513000073.  Google Scholar

[37]

S. Zelik, Asymptotic Regularity of Solutions of Singularly Perturbed Damped Wave Equations with Supercritical Nonlinearities, Discrete Contin. Dyn. Syst., 11 (2004), 351-392.  doi: 10.3934/dcds.2004.11.351.  Google Scholar

[38]

M. Z. Zgurovsky, P. O. Kasyanov, O. V. Kapustyan, J. Valero and J. V. Zadoianchuk, Evolution Inclusions and Variation Inequalities for Earth Data Processing Ⅲ. Long-Time Behavior of Evolution Inclusions Solutions in Earth Data Analysis, Series: Advances in Mechanics and Mathematics, 27, Springer, Berlin, 2012. doi: 10.1007/978-3-642-28512-7.  Google Scholar

[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[5]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[6]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[7]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[8]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

[9]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[10]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[11]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[14]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[15]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[16]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[20]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (142)
  • HTML views (129)
  • Cited by (1)

[Back to Top]