
-
Previous Article
Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations
- DCDS-B Home
- This Issue
-
Next Article
Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations
A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain |
In [
Unfortunately, an essential lemma in their programme for general surfaces has a gap. Although the proof of this lemma can be amended in the case of the sphere, the plane, the projective plane and the projective plane minus one point (and therefore the characterizations for these surfaces in [
Consequently, the topological characterization for analytic vector fields on open subsets of the sphere and the projective plane is still pending. In this paper, we close this problem in the case of open subsets of the sphere.
References:
[1] |
V. W. Adkisson,
Plane Peanian continua with unique maps on the sphere and in the plane, Trans. Amer. Math. Soc., 44 (1938), 58-67.
doi: 10.1090/S0002-9947-1938-1501962-9. |
[2] |
V. W. Adkisson and S. Mac Lane,
Extending maps of plane Peano continua, Duke Math. J., 6 (1940), 216-228.
doi: 10.1215/S0012-7094-40-00616-0. |
[3] |
S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153, American Mathematical Society, Providence, 1996. |
[4] |
N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Reprint of the 1970 original, Springer-Verlag, Berlin, 2002. |
[5] |
J. G. Espín Buendía and V. Jiménez López,
Analytic plane sets are locally $2n$-stars: A dynamically based proof, Appl. Math. Inf. Sci., 9 (2015), 2355-2360.
|
[6] |
J. G. Espín Buendía and V. Jiménez López,
Some remarks on the $\omega$-limit sets for plane, sphere and projective plane analytic flows, Qual. Theory Dyn. Syst., 16 (2017), 293-298.
doi: 10.1007/s12346-016-0192-1. |
[7] |
H. M. Gehman,
On extending a continuous $(1\text{-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc., 28 (1926), 252-265.
doi: 10.2307/1989114. |
[8] |
H. M. Gehman,
On extending a continuous (1-1) correspondence. Ⅱ, Trans. Amer. Math. Soc., 31 (1929), 241-252.
doi: 10.2307/1989382. |
[9] |
H. Grauert,
On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.
doi: 10.2307/1970257. |
[10] |
M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York-Amsterdam, 1967. |
[11] |
C. Gutiérrez,
Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6 (1986), 17-44.
doi: 10.1017/S0143385700003278. |
[12] |
F. Harary, Graph Theory, Addison-Wesley, Reading-Menlo Park-London, 1969. |
[13] |
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[14] |
W. Huebsch and M. Morse,
Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2), 11 (1962), 291-318.
doi: 10.1007/BF02843877. |
[15] |
V. Jiménez López and J. Llibre,
A topological characterization of the $\omega$-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math., 216 (2007), 677-710.
doi: 10.1016/j.aim.2007.06.007. |
[16] |
V. Jiménez López and G. Soler López,
A characterization of $\omega$-limit sets for continuous flows on surfaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 515-521.
|
[17] |
U. Karimov. D. Repovš, W. Rosicki and A. Zastrow,
On two-dimensional planar compacta not homotopically equivalent to any one-dimensional compactum, Topology Appl., 153 (2005), 284-293.
doi: 10.1016/j.topol.2004.02.020. |
[18] |
J. R. Kline,
Concerning sense on closed curves in non-metrical plane analysis situs, Ann. of Math. (2), 21 (1919), 113-119.
doi: 10.2307/2007227. |
[19] |
E. A. Knobelauch,
Extensions of homeomorphisms, Duke Math. J., 16 (1949), 247-259.
doi: 10.1215/S0012-7094-49-01624-5. |
[20] |
K. Kuratowski, Topology. Volume Ⅱ, Academic Press, New York, 1968.
![]() ![]() |
[21] |
S. Mac Lane and V. W. Adkisson, Extensions of homeomorphisms on the sphere, in Lectures in Topology (ed. C. Chevalley), University of Michigan Press, (1941), 223–236 |
[22] |
S. Mac Lane and V. W. Adkisson,
Fixed points and the extension of the homeomorphisms of a Planar Graph, Amer. J. Math., 60 (1938), 611-639.
doi: 10.2307/2371602. |
[23] |
C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. |
[24] |
W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, New York, 1987. |
[25] |
R. A. Smith and E. S. Thomas,
Transitive flows on two-dimensional manifolds, J. London Math. Soc. (2), 37 (1988), 569-576.
doi: 10.1112/jlms/s2-37.3.569. |
[26] |
K. Spindler, Abstract Algebra with Applications. Volume Ⅱ. Rings and Fields, Marcel Dekker, New York, 1994. |
[27] |
D. Sullivan, Combinatorial invariants of analytic spaces, in Proceedings of Liverpool Singularities--Symposium, Ⅰ (1969/70) (ed. C. T. C. Wall), Springer, (1971), 165–168. |
[28] |
R. Vinograd,
On the limit behavior of an unbounded integral curve (Russian), Moskov. Gos. Univ. Uč. Zap. 155, Mat., 5 (1952), 94-136.
|
[29] |
J. H. C. Whitehead,
Manifolds with transverse fields in euclidean space, Ann. of Math., 73 (1961), 154-212.
doi: 10.2307/1970286. |
[30] |
H. Whitney,
Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.
doi: 10.1090/S0002-9947-1934-1501735-3. |
[31] |
H. Whitney and F. Bruhat,
Quelques propriétés fondamentales des ensembles analytiques-réels, (French) [Some fundamental properties of real analytic sets], Comment. Math. Helv., 33 (1959), 132-160.
doi: 10.1007/BF02565913. |
[32] |
S. Willard, General Topology, Dover Publications, Mineola, 1970. |
show all references
References:
[1] |
V. W. Adkisson,
Plane Peanian continua with unique maps on the sphere and in the plane, Trans. Amer. Math. Soc., 44 (1938), 58-67.
doi: 10.1090/S0002-9947-1938-1501962-9. |
[2] |
V. W. Adkisson and S. Mac Lane,
Extending maps of plane Peano continua, Duke Math. J., 6 (1940), 216-228.
doi: 10.1215/S0012-7094-40-00616-0. |
[3] |
S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153, American Mathematical Society, Providence, 1996. |
[4] |
N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Reprint of the 1970 original, Springer-Verlag, Berlin, 2002. |
[5] |
J. G. Espín Buendía and V. Jiménez López,
Analytic plane sets are locally $2n$-stars: A dynamically based proof, Appl. Math. Inf. Sci., 9 (2015), 2355-2360.
|
[6] |
J. G. Espín Buendía and V. Jiménez López,
Some remarks on the $\omega$-limit sets for plane, sphere and projective plane analytic flows, Qual. Theory Dyn. Syst., 16 (2017), 293-298.
doi: 10.1007/s12346-016-0192-1. |
[7] |
H. M. Gehman,
On extending a continuous $(1\text{-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc., 28 (1926), 252-265.
doi: 10.2307/1989114. |
[8] |
H. M. Gehman,
On extending a continuous (1-1) correspondence. Ⅱ, Trans. Amer. Math. Soc., 31 (1929), 241-252.
doi: 10.2307/1989382. |
[9] |
H. Grauert,
On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.
doi: 10.2307/1970257. |
[10] |
M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York-Amsterdam, 1967. |
[11] |
C. Gutiérrez,
Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6 (1986), 17-44.
doi: 10.1017/S0143385700003278. |
[12] |
F. Harary, Graph Theory, Addison-Wesley, Reading-Menlo Park-London, 1969. |
[13] |
A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
![]() ![]() |
[14] |
W. Huebsch and M. Morse,
Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2), 11 (1962), 291-318.
doi: 10.1007/BF02843877. |
[15] |
V. Jiménez López and J. Llibre,
A topological characterization of the $\omega$-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math., 216 (2007), 677-710.
doi: 10.1016/j.aim.2007.06.007. |
[16] |
V. Jiménez López and G. Soler López,
A characterization of $\omega$-limit sets for continuous flows on surfaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 515-521.
|
[17] |
U. Karimov. D. Repovš, W. Rosicki and A. Zastrow,
On two-dimensional planar compacta not homotopically equivalent to any one-dimensional compactum, Topology Appl., 153 (2005), 284-293.
doi: 10.1016/j.topol.2004.02.020. |
[18] |
J. R. Kline,
Concerning sense on closed curves in non-metrical plane analysis situs, Ann. of Math. (2), 21 (1919), 113-119.
doi: 10.2307/2007227. |
[19] |
E. A. Knobelauch,
Extensions of homeomorphisms, Duke Math. J., 16 (1949), 247-259.
doi: 10.1215/S0012-7094-49-01624-5. |
[20] |
K. Kuratowski, Topology. Volume Ⅱ, Academic Press, New York, 1968.
![]() ![]() |
[21] |
S. Mac Lane and V. W. Adkisson, Extensions of homeomorphisms on the sphere, in Lectures in Topology (ed. C. Chevalley), University of Michigan Press, (1941), 223–236 |
[22] |
S. Mac Lane and V. W. Adkisson,
Fixed points and the extension of the homeomorphisms of a Planar Graph, Amer. J. Math., 60 (1938), 611-639.
doi: 10.2307/2371602. |
[23] |
C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. |
[24] |
W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, New York, 1987. |
[25] |
R. A. Smith and E. S. Thomas,
Transitive flows on two-dimensional manifolds, J. London Math. Soc. (2), 37 (1988), 569-576.
doi: 10.1112/jlms/s2-37.3.569. |
[26] |
K. Spindler, Abstract Algebra with Applications. Volume Ⅱ. Rings and Fields, Marcel Dekker, New York, 1994. |
[27] |
D. Sullivan, Combinatorial invariants of analytic spaces, in Proceedings of Liverpool Singularities--Symposium, Ⅰ (1969/70) (ed. C. T. C. Wall), Springer, (1971), 165–168. |
[28] |
R. Vinograd,
On the limit behavior of an unbounded integral curve (Russian), Moskov. Gos. Univ. Uč. Zap. 155, Mat., 5 (1952), 94-136.
|
[29] |
J. H. C. Whitehead,
Manifolds with transverse fields in euclidean space, Ann. of Math., 73 (1961), 154-212.
doi: 10.2307/1970286. |
[30] |
H. Whitney,
Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.
doi: 10.1090/S0002-9947-1934-1501735-3. |
[31] |
H. Whitney and F. Bruhat,
Quelques propriétés fondamentales des ensembles analytiques-réels, (French) [Some fundamental properties of real analytic sets], Comment. Math. Helv., 33 (1959), 132-160.
doi: 10.1007/BF02565913. |
[32] |
S. Willard, General Topology, Dover Publications, Mineola, 1970. |



[1] |
Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487 |
[2] |
Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022043 |
[3] |
Alexey Glutsyuk, Yury Kudryashov. No planar billiard possesses an open set of quadrilateral trajectories. Journal of Modern Dynamics, 2012, 6 (3) : 287-326. doi: 10.3934/jmd.2012.6.287 |
[4] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[5] |
Xueting Tian. Topological pressure for the completely irregular set of birkhoff averages. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118 |
[6] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[7] |
Manuel Fernández-Martínez. A real attractor non admitting a connected feasible open set. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 723-725. doi: 10.3934/dcdss.2019046 |
[8] |
Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993 |
[9] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[10] |
Robert Roussarie. A topological study of planar vector field singularities. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5217-5245. doi: 10.3934/dcds.2020226 |
[11] |
Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979 |
[12] |
Finley Freibert. The classification of complementary information set codes of lengths $14$ and $16$. Advances in Mathematics of Communications, 2013, 7 (3) : 267-278. doi: 10.3934/amc.2013.7.267 |
[13] |
Guolin Yu. Topological properties of Henig globally efficient solutions of set-valued problems. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 309-316. doi: 10.3934/naco.2014.4.309 |
[14] |
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519 |
[15] |
Lan Wen. On the preperiodic set. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 237-241. doi: 10.3934/dcds.2000.6.237 |
[16] |
François Berteloot, Tien-Cuong Dinh. The Mandelbrot set is the shadow of a Julia set. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6611-6633. doi: 10.3934/dcds.2020262 |
[17] |
Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35 |
[18] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[19] |
Ying Gao, Xinmin Yang, Jin Yang, Hong Yan. Scalarizations and Lagrange multipliers for approximate solutions in the vector optimization problems with set-valued maps. Journal of Industrial and Management Optimization, 2015, 11 (2) : 673-683. doi: 10.3934/jimo.2015.11.673 |
[20] |
Xing Wang, Nan-Jing Huang. Stability analysis for set-valued vector mixed variational inequalities in real reflexive Banach spaces. Journal of Industrial and Management Optimization, 2013, 9 (1) : 57-74. doi: 10.3934/jimo.2013.9.57 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]