• Previous Article
    Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations
  • DCDS-B Home
  • This Issue
  • Next Article
    Inertial manifolds for the hyperbolic relaxation of semilinear parabolic equations
March  2019, 24(3): 1143-1173. doi: 10.3934/dcdsb.2019010

A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

* Corresponding author: V. Jiménez López

Received  September 2017 Revised  March 2018 Published  January 2019

Fund Project: This work has been partially supported by Ministerio de Economía y Competitividad, Spain, grant MTM2014-52920-P. The first author has been also supported by Fundación Séneca by means of the program "Contratos Predoctorales de Formación del Personal Investigador", grant 18910/FPI/13.

In [15], V. Jiménez López and J. Llibre characterized, up to homeomorphism, the $ \omega $-limit sets of analytic vector fields on the sphere and the projective plane. The authors also studied the same problem for open subsets of these surfaces.

Unfortunately, an essential lemma in their programme for general surfaces has a gap. Although the proof of this lemma can be amended in the case of the sphere, the plane, the projective plane and the projective plane minus one point (and therefore the characterizations for these surfaces in [15] are correct), the lemma is not generally true, see [6].

Consequently, the topological characterization for analytic vector fields on open subsets of the sphere and the projective plane is still pending. In this paper, we close this problem in the case of open subsets of the sphere.

Citation: José Ginés Espín Buendía, Víctor Jiménez Lopéz. A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1143-1173. doi: 10.3934/dcdsb.2019010
References:
[1]

V. W. Adkisson, Plane Peanian continua with unique maps on the sphere and in the plane, Trans. Amer. Math. Soc., 44 (1938), 58-67.  doi: 10.1090/S0002-9947-1938-1501962-9.  Google Scholar

[2]

V. W. Adkisson and S. Mac Lane, Extending maps of plane Peano continua, Duke Math. J., 6 (1940), 216-228.  doi: 10.1215/S0012-7094-40-00616-0.  Google Scholar

[3]

S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153, American Mathematical Society, Providence, 1996.  Google Scholar

[4]

N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Reprint of the 1970 original, Springer-Verlag, Berlin, 2002.  Google Scholar

[5]

J. G. Espín Buendía and V. Jiménez López, Analytic plane sets are locally $2n$-stars: A dynamically based proof, Appl. Math. Inf. Sci., 9 (2015), 2355-2360.   Google Scholar

[6]

J. G. Espín Buendía and V. Jiménez López, Some remarks on the $\omega$-limit sets for plane, sphere and projective plane analytic flows, Qual. Theory Dyn. Syst., 16 (2017), 293-298.  doi: 10.1007/s12346-016-0192-1.  Google Scholar

[7]

H. M. Gehman, On extending a continuous $(1\text{-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc., 28 (1926), 252-265.  doi: 10.2307/1989114.  Google Scholar

[8]

H. M. Gehman, On extending a continuous (1-1) correspondence. Ⅱ, Trans. Amer. Math. Soc., 31 (1929), 241-252.  doi: 10.2307/1989382.  Google Scholar

[9]

H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.  doi: 10.2307/1970257.  Google Scholar

[10]

M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York-Amsterdam, 1967.  Google Scholar

[11]

C. Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6 (1986), 17-44.  doi: 10.1017/S0143385700003278.  Google Scholar

[12]

F. Harary, Graph Theory, Addison-Wesley, Reading-Menlo Park-London, 1969.  Google Scholar

[13] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.   Google Scholar
[14]

W. Huebsch and M. Morse, Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2), 11 (1962), 291-318.  doi: 10.1007/BF02843877.  Google Scholar

[15]

V. Jiménez López and J. Llibre, A topological characterization of the $\omega$-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math., 216 (2007), 677-710.  doi: 10.1016/j.aim.2007.06.007.  Google Scholar

[16]

V. Jiménez López and G. Soler López, A characterization of $\omega$-limit sets for continuous flows on surfaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 515-521.   Google Scholar

[17]

U. Karimov. D. RepovšW. Rosicki and A. Zastrow, On two-dimensional planar compacta not homotopically equivalent to any one-dimensional compactum, Topology Appl., 153 (2005), 284-293.  doi: 10.1016/j.topol.2004.02.020.  Google Scholar

[18]

J. R. Kline, Concerning sense on closed curves in non-metrical plane analysis situs, Ann. of Math. (2), 21 (1919), 113-119.  doi: 10.2307/2007227.  Google Scholar

[19]

E. A. Knobelauch, Extensions of homeomorphisms, Duke Math. J., 16 (1949), 247-259.  doi: 10.1215/S0012-7094-49-01624-5.  Google Scholar

[20] K. Kuratowski, Topology. Volume Ⅱ, Academic Press, New York, 1968.   Google Scholar
[21]

S. Mac Lane and V. W. Adkisson, Extensions of homeomorphisms on the sphere, in Lectures in Topology (ed. C. Chevalley), University of Michigan Press, (1941), 223–236  Google Scholar

[22]

S. Mac Lane and V. W. Adkisson, Fixed points and the extension of the homeomorphisms of a Planar Graph, Amer. J. Math., 60 (1938), 611-639.  doi: 10.2307/2371602.  Google Scholar

[23]

C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.  Google Scholar

[24]

W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, New York, 1987.  Google Scholar

[25]

R. A. Smith and E. S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc. (2), 37 (1988), 569-576.  doi: 10.1112/jlms/s2-37.3.569.  Google Scholar

[26]

K. Spindler, Abstract Algebra with Applications. Volume Ⅱ. Rings and Fields, Marcel Dekker, New York, 1994.  Google Scholar

[27]

D. Sullivan, Combinatorial invariants of analytic spaces, in Proceedings of Liverpool Singularities--Symposium, Ⅰ (1969/70) (ed. C. T. C. Wall), Springer, (1971), 165–168.  Google Scholar

[28]

R. Vinograd, On the limit behavior of an unbounded integral curve (Russian), Moskov. Gos. Univ. Uč. Zap. 155, Mat., 5 (1952), 94-136.   Google Scholar

[29]

J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math., 73 (1961), 154-212.  doi: 10.2307/1970286.  Google Scholar

[30]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[31]

H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, (French) [Some fundamental properties of real analytic sets], Comment. Math. Helv., 33 (1959), 132-160.  doi: 10.1007/BF02565913.  Google Scholar

[32]

S. Willard, General Topology, Dover Publications, Mineola, 1970.  Google Scholar

show all references

References:
[1]

V. W. Adkisson, Plane Peanian continua with unique maps on the sphere and in the plane, Trans. Amer. Math. Soc., 44 (1938), 58-67.  doi: 10.1090/S0002-9947-1938-1501962-9.  Google Scholar

[2]

V. W. Adkisson and S. Mac Lane, Extending maps of plane Peano continua, Duke Math. J., 6 (1940), 216-228.  doi: 10.1215/S0012-7094-40-00616-0.  Google Scholar

[3]

S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153, American Mathematical Society, Providence, 1996.  Google Scholar

[4]

N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Reprint of the 1970 original, Springer-Verlag, Berlin, 2002.  Google Scholar

[5]

J. G. Espín Buendía and V. Jiménez López, Analytic plane sets are locally $2n$-stars: A dynamically based proof, Appl. Math. Inf. Sci., 9 (2015), 2355-2360.   Google Scholar

[6]

J. G. Espín Buendía and V. Jiménez López, Some remarks on the $\omega$-limit sets for plane, sphere and projective plane analytic flows, Qual. Theory Dyn. Syst., 16 (2017), 293-298.  doi: 10.1007/s12346-016-0192-1.  Google Scholar

[7]

H. M. Gehman, On extending a continuous $(1\text{-}1)$ correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc., 28 (1926), 252-265.  doi: 10.2307/1989114.  Google Scholar

[8]

H. M. Gehman, On extending a continuous (1-1) correspondence. Ⅱ, Trans. Amer. Math. Soc., 31 (1929), 241-252.  doi: 10.2307/1989382.  Google Scholar

[9]

H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68 (1958), 460-472.  doi: 10.2307/1970257.  Google Scholar

[10]

M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York-Amsterdam, 1967.  Google Scholar

[11]

C. Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6 (1986), 17-44.  doi: 10.1017/S0143385700003278.  Google Scholar

[12]

F. Harary, Graph Theory, Addison-Wesley, Reading-Menlo Park-London, 1969.  Google Scholar

[13] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.   Google Scholar
[14]

W. Huebsch and M. Morse, Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2), 11 (1962), 291-318.  doi: 10.1007/BF02843877.  Google Scholar

[15]

V. Jiménez López and J. Llibre, A topological characterization of the $\omega$-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math., 216 (2007), 677-710.  doi: 10.1016/j.aim.2007.06.007.  Google Scholar

[16]

V. Jiménez López and G. Soler López, A characterization of $\omega$-limit sets for continuous flows on surfaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9 (2006), 515-521.   Google Scholar

[17]

U. Karimov. D. RepovšW. Rosicki and A. Zastrow, On two-dimensional planar compacta not homotopically equivalent to any one-dimensional compactum, Topology Appl., 153 (2005), 284-293.  doi: 10.1016/j.topol.2004.02.020.  Google Scholar

[18]

J. R. Kline, Concerning sense on closed curves in non-metrical plane analysis situs, Ann. of Math. (2), 21 (1919), 113-119.  doi: 10.2307/2007227.  Google Scholar

[19]

E. A. Knobelauch, Extensions of homeomorphisms, Duke Math. J., 16 (1949), 247-259.  doi: 10.1215/S0012-7094-49-01624-5.  Google Scholar

[20] K. Kuratowski, Topology. Volume Ⅱ, Academic Press, New York, 1968.   Google Scholar
[21]

S. Mac Lane and V. W. Adkisson, Extensions of homeomorphisms on the sphere, in Lectures in Topology (ed. C. Chevalley), University of Michigan Press, (1941), 223–236  Google Scholar

[22]

S. Mac Lane and V. W. Adkisson, Fixed points and the extension of the homeomorphisms of a Planar Graph, Amer. J. Math., 60 (1938), 611-639.  doi: 10.2307/2371602.  Google Scholar

[23]

C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.  Google Scholar

[24]

W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, New York, 1987.  Google Scholar

[25]

R. A. Smith and E. S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc. (2), 37 (1988), 569-576.  doi: 10.1112/jlms/s2-37.3.569.  Google Scholar

[26]

K. Spindler, Abstract Algebra with Applications. Volume Ⅱ. Rings and Fields, Marcel Dekker, New York, 1994.  Google Scholar

[27]

D. Sullivan, Combinatorial invariants of analytic spaces, in Proceedings of Liverpool Singularities--Symposium, Ⅰ (1969/70) (ed. C. T. C. Wall), Springer, (1971), 165–168.  Google Scholar

[28]

R. Vinograd, On the limit behavior of an unbounded integral curve (Russian), Moskov. Gos. Univ. Uč. Zap. 155, Mat., 5 (1952), 94-136.   Google Scholar

[29]

J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math., 73 (1961), 154-212.  doi: 10.2307/1970286.  Google Scholar

[30]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934), 63-89.  doi: 10.1090/S0002-9947-1934-1501735-3.  Google Scholar

[31]

H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, (French) [Some fundamental properties of real analytic sets], Comment. Math. Helv., 33 (1959), 132-160.  doi: 10.1007/BF02565913.  Google Scholar

[32]

S. Willard, General Topology, Dover Publications, Mineola, 1970.  Google Scholar

Figure 1.  The different parts of a shrub
Figure 2.  The $ 5 $-cusped hypocycloid (left) and the $ 8 $-cusped hypocycloid with some arcs (right)
Figure 3.  In the positive (counterclockwise) sense: a node with a flexible (F) leaf, a rigid (R) sprig, a bland (B) leaf and a rigid leaf (left), and a leaf with flexible (f), bland (b), rigid (r) and bland nodes (right)
Figure 4.  From left to right, the shrubs $ A $, $ A' $, $ A'' $ and $ A^* $.
[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (81)
  • HTML views (109)
  • Cited by (0)

[Back to Top]