We consider the nonautonomous perturbation $ x_t+Ax = f(x)+\varepsilon h(t) $ of a gradient-like system $ x_t+Ax = f(x) $ in a Banach space $ X $, where $ A $ is a sectorial operator with compact resolvent. Assume the non-perturbed system $ x_t+Ax = f(x) $ has an attractor $ {\mathscr A} $. Then it can be shown that the perturbed one has a pullback attractor $ {\mathscr A} _\varepsilon $ near $ {\mathscr A} $. If all the equilibria of the non-perturbed system in $ {\mathscr A} $ are hyperbolic, we also infer from [
Citation: |
[1] | E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Non-autonomous Morse decomposition and Lyapunov functions for gradient-like processes, Trans. Amer. Math. Soc., 365 (2013), 5277-5312. doi: 10.1090/S0002-9947-2013-05810-2. |
[2] | A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992. |
[3] | P. Brunovský and P. Poláčik, The Morse–Smale structure of a generic reaction–diffusion equation in higher space dimension, J. Differential Equations, 135 (1997), 129-181. doi: 10.1006/jdeq.1996.3234. |
[4] | A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668. doi: 10.1016/j.jde.2009.01.007. |
[5] | A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional NonAutonomous Dynamical Systems, Appl. Math. Sci. 182, 2013. doi: 10.1007/978-1-4614-4581-4. |
[6] | A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Su$\acute{a}$rez, Characterization of nonautonomous attractors of a perturbed gradient system, J. Differential Equations, 236 (2007), 570-603. doi: 10.1016/j.jde.2007.01.017. |
[7] | T. Caraballo, J. C. Jara, J. A. Langa and Z. X. Liu, Morse decomposition of attractors for non-autonomous dynamical systems, Adv. Nonlinear Stud., 13 (2013), 309-329. doi: 10.1515/ans-2013-0204. |
[8] | T. Caraballo, J. A. Langa and Z. X. Liu, Gradient infinite-dimensional random dynamical system, SIAM J. Appl. Dyn. Syst., 11 (2012), 1817-1847. doi: 10.1137/120862752. |
[9] | D. Cheban, P. Kloeden and B. Schmalfuss, The relation between pullback and global attractors for nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2 (2002), 125-144. |
[10] | D. Cheban, C. Mammana and E. Michetti, The structure of global attractors for nonautonomous perturbations of discrete gradient-like dynamical systems, J. Difference Equ. Appl., 22 (2016), 1673-1697. doi: 10.1080/10236198.2016.1234616. |
[11] | X. Chen and J. Q. Duan, State space decomposition for non-autonomous dynamical systems, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 957-974. doi: 10.1017/S0308210510000661. |
[12] | V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonmous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. |
[13] | V. V. Chepyzhov and M. I. Vishik, Attractors of Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002. |
[14] | H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341. doi: 10.1007/BF02219225. |
[15] | J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr. 25, Amer. Math. Soc., R.I., 1988. |
[16] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840, Springer-Verlag, 1981. |
[17] | L. Kapitanski and I. Rodnianski, Shape and morse theory of attractors, Comm. Pure Appl. Math., 53 (2000), 218-242. doi: 10.1002/(SICI)1097-0312(200002)53:2<218::AID-CPA2>3.0.CO;2-W. |
[18] | P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 144 (2016), 259-268. doi: 10.1090/proc/12735. |
[19] | P. E. Kloeden and H. M. Rodrigues, Dynamics of a class of ODEs more general than almost periodic, Nonlinear Anal., 74 (2011), 2695-2719. doi: 10.1016/j.na.2010.12.025. |
[20] | O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, New-York, 1991. doi: 10.1017/CBO9780511569418. |
[21] | D. S. Li and X. X. Zhang, On dynamical properties of general dynamical systems and differential inclusions, J. Appl. Math. Anal. Appl., 274 (2002), 705-724. doi: 10.1016/S0022-247X(02)00352-9. |
[22] | D. S. Li and J. Q. Duan, Structure of the set of bounded solutions for a class of nonautonomous second-order differential equations, J. Differential Equations, 246 (2009), 1754-1773. doi: 10.1016/j.jde.2008.10.031. |
[23] | D. S. Li, Morse theory of attractors via Lyapunov functions, preprint, arXiv: 1003.0305v1. |
[24] | M. Rasmussen, Morse decompositions of nonautonomous dynamical systems, Trans. Amer. Math. Soc., 359 (2007), 5091-5115. doi: 10.1090/S0002-9947-07-04318-8. |
[25] | J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001. doi: 10.1007/978-94-010-0732-0. |
[26] | G. R. Sell and Y. C. You, Dynamics of Evolution Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. |
[27] | W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), x+93 pp. doi: 10.1090/memo/0647. |
[28] | R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. |
[29] | M. I. Vishik, Asymptotic Behavior of Solutions of Evlutionary Equations, Cambridge Univ. Press, Cambriage, England, 1992. |
[30] | M. I. Vishik, S. V. Zelik and V. V. Chepyzhov, Regular attractors and nonautonomous perturbations of them, Mat. Sb., 204 (2013), 1-42. doi: 10.1070/SM2013v204n01ABEH004290. |
[31] | Y. J. Wang, D. S. Li and P. E. Kloeden, On the asymptotical behavior of nonautonomous dynamical systems, Nonlinear Anal., 59 (2004), 35-53. doi: 10.1016/j.na.2004.03.035. |