• Previous Article
    Attractors of multivalued semi-flows generated by solutions of optimal control problems
  • DCDS-B Home
  • This Issue
  • Next Article
    Forward attraction of pullback attractors and synchronizing behavior of gradient-like systems with nonautonomous perturbations
March  2019, 24(3): 1199-1227. doi: 10.3934/dcdsb.2019012

On relation between attractors for single and multivalued semiflows for a certain class of PDEs

1. 

Faculty of Mathematics and Computer Sciences, Jagiellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland

2. 

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland

3. 

Faculty of Mathematics and Computer Sciences, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Received  January 2018 Revised  May 2018 Published  January 2019

Fund Project: Work of P.K.G.L,and J.S.was supported by National Science Center (NCN) of Poland under project No.DEC-2017/25/B/ST1/00302,work of P.K.and J.S.was partially supported by NCN of Poland under project No.UMO-2016/22/A/ST1/00077.

Sometimes it is not possible to prove the uniqueness of the weak solutions for problems of mathematical physics, but it is possible to bootstrap their regularity to the regularity of strong solutions which are unique. In this paper we formulate an abstract setting for such class of problems and we provide the conditions under which the global attractors for both strong and weak solutions coincide and the fractal dimension of the common attractor is finite. We present two problems belonging to this class: planar Rayleigh–Bénard flow of thermomicropolar fluid and surface quasigeostrophic equation on torus.

Citation: Piotr Kalita, Grzegorz Łukaszewicz, Jakub Siemianowski. On relation between attractors for single and multivalued semiflows for a certain class of PDEs. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1199-1227. doi: 10.3934/dcdsb.2019012
References:
[1]

J. M. ArrietaA. Rodríguez–Bernal and J. Valero, Dynamics of a reaction diffusion equation with a discontinuous nonlinearity, Int. J. Bifurcat. Chaos, 16 (2006), 2965-2984.  doi: 10.1142/S0218127406016586.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, London, New York, Tokyo, 1992.  Google Scholar

[3]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Int. J. Bifurcat. Chaos, 20 (2010), 2591-2636.  doi: 10.1142/S0218127410027246.  Google Scholar

[4]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[5]

L. A. Cafarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[6]

T. CaraballoP. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322.  doi: 10.1023/A:1024422619616.  Google Scholar

[7]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, CR. Acad. Sci. I-Math., 321 (1995), 1309-1314.   Google Scholar

[8]

A. Cheskidov and M. Dai, The existence of a global attractor for the forced critical surface quasi-geostrophic equation in $L^2$, Journal of Mathematical Fluid Mechanics, 20 (2018), 213-225.  doi: 10.1007/s00021-017-0324-7.  Google Scholar

[9]

A. Cheskidov and C. Foiaş, On global attractors of the 3D Navier Stokes equations, Journal of Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[10]

J. W. Cholewa and T. Dłotko, Bi-spaces global attractors in abstract parabolic equations, Banach Center Publications, PWN, 60 2003, 13–26. doi: 10.4064/bc60-0-1.  Google Scholar

[11]

J. W. CholewaR. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors, Bollettino dell'Unione Matematica Italiana, 1 (2008), 121-145.   Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, American Mathematical Society, 195 2008, viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[13]

P. ConstantinM. Coti Zelati and V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity, 29 (2016), 298-318.  doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[14]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[15]

P. ConstantinA. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Communications in Mathematical Physics, 335 (2015), 93-141.  doi: 10.1007/s00220-014-2129-3.  Google Scholar

[16]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geometric and Functional Analysis, 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[17]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[18]

M. Coti Zelati and P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete and Continuous Dynamical Systems - Series B, 55 (2017), 1857-1873.  doi: 10.3934/dcdsb.2017110.  Google Scholar

[19]

A. Eden, C. Foiaş, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley & Sons/Masson, Chichester, New York, Brisbane, Toronto, Singapore/Paris, Milan, Barcelona, 1994.  Google Scholar

[20]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.  Google Scholar

[21]

A. C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl., 38 (1972), 480–496. Google Scholar

[22]

P. Kalita, J. A. Langa and G. Łukaszewicz, Micropolar meets Newtonian. The Rayleigh–Bénard problem, Physica D: Nonlinear Phenomena, accepted for publication doi: 10.1016/j.physd.2018.12.004.  Google Scholar

[23]

P. Kalita, G. Łukaszewicz and J. Siemianowski, Rayleigh–Bénard problem for thermomicropolar Fluids, Topological Methods in Nonlinear Analysis, accepted for publication doi: 10.12775/TMNA.2018.012.  Google Scholar

[24]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurcat. Chaos, 20 (2010), 2723–2734. doi: 10.1142/S0218127410027313.  Google Scholar

[25]

A. Kiselev and F. Nazarov, A variation on a theme of Cafarelli and Vasseur, Journal of Mathematical Sciences, 166 (2010), 31–39. doi: 10.1007/s10958-010-9842-z.  Google Scholar

[26]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[27]

G. Łukaszewicz, Long time behavior of 2D micropolar fluid flows, Mathematical and Computer Modelling, 34 (2001), 487–509. doi: 10.1016/S0895-7177(01)00078-4.  Google Scholar

[28]

G. Łukaszewicz, Asymptotic behavior of micropolar fluid flows, International Journal of Engineering Science, 41 (2003), 259–269. doi: 10.1016/S0020-7225(02)00208-2.  Google Scholar

[29]

V. S. Melnik and J. Valero, On attractors of multivalued semiflows and differential inclusions, Set-Valued Anal., 6 (1998), 83–111. doi: 10.1023/A:1008608431399.  Google Scholar

[30]

V. S. Melnik and J. Valero, Addendum to ''On Attractors of Multivalued Semiflows and Differential Inclusions'' [Set-Valued Anal. 6 (1998), 83–111], Set-Valued Anal., 16 (2008), 507–509. doi: 10.1007/s11228-007-0066-4.  Google Scholar

[31]

L. E. Payne and B. Straughan, Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid, International Journal of Engineering Science, 27 (1989), 827–836. doi: 10.1016/0020-7225(89)90049-9.  Google Scholar

[32]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, Ph.D. Thesis, 1995, The University of Chicago.  Google Scholar

[33]

J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, UK, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[34]

B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Springer, 2004. doi: 10.1007/978-0-387-21740-6.  Google Scholar

[35]

A. Tarasińska, Global attractor for heat convection problem in a micropolar fluid, Mathematical Methods in the Applied Sciences, 29 (2006), 1215–1236. doi: 10.1002/mma.720.  Google Scholar

[36]

A. Tarasińska, Pullback attractor for heat convection problem in a micropolar fluid, Nonlinear Analysis: Real World Applications, 11 (2010), 1458–1471. doi: 10.1016/j.nonrwa.2009.03.003.  Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer–Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, Pennsylvania, 1983.  Google Scholar

[39]

J. Valero, Finite and infinite dimensional attractors of multi-valued reaction diffusion equations, Acta Math. Hungary, 88 (2000), 239–258. doi: 10.1023/A:1006769315268.  Google Scholar

show all references

References:
[1]

J. M. ArrietaA. Rodríguez–Bernal and J. Valero, Dynamics of a reaction diffusion equation with a discontinuous nonlinearity, Int. J. Bifurcat. Chaos, 16 (2006), 2965-2984.  doi: 10.1142/S0218127406016586.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, London, New York, Tokyo, 1992.  Google Scholar

[3]

F. BalibreaT. CaraballoP. E. Kloeden and J. Valero, Recent developments in dynamical systems: Three perspectives, Int. J. Bifurcat. Chaos, 20 (2010), 2591-2636.  doi: 10.1142/S0218127410027246.  Google Scholar

[4]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, Nonlinear Sci., 7 (1997), 475-502.  doi: 10.1007/s003329900037.  Google Scholar

[5]

L. A. Cafarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.  doi: 10.4007/annals.2010.171.1903.  Google Scholar

[6]

T. CaraballoP. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322.  doi: 10.1023/A:1024422619616.  Google Scholar

[7]

V. V. Chepyzhov and M. I. Vishik, Trajectory attractors for evolution equations, CR. Acad. Sci. I-Math., 321 (1995), 1309-1314.   Google Scholar

[8]

A. Cheskidov and M. Dai, The existence of a global attractor for the forced critical surface quasi-geostrophic equation in $L^2$, Journal of Mathematical Fluid Mechanics, 20 (2018), 213-225.  doi: 10.1007/s00021-017-0324-7.  Google Scholar

[9]

A. Cheskidov and C. Foiaş, On global attractors of the 3D Navier Stokes equations, Journal of Differential Equations, 231 (2006), 714-754.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[10]

J. W. Cholewa and T. Dłotko, Bi-spaces global attractors in abstract parabolic equations, Banach Center Publications, PWN, 60 2003, 13–26. doi: 10.4064/bc60-0-1.  Google Scholar

[11]

J. W. CholewaR. Czaja and G. Mola, Remarks on the fractal dimension of bi-space global and exponential attractors, Bollettino dell'Unione Matematica Italiana, 1 (2008), 121-145.   Google Scholar

[12]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, American Mathematical Society, 195 2008, viii+183 pp. doi: 10.1090/memo/0912.  Google Scholar

[13]

P. ConstantinM. Coti Zelati and V. Vicol, Uniformly attracting limit sets for the critically dissipative SQG equation, Nonlinearity, 29 (2016), 298-318.  doi: 10.1088/0951-7715/29/2/298.  Google Scholar

[14]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[15]

P. ConstantinA. Tarfulea and V. Vicol, Long time dynamics of forced critical SQG, Communications in Mathematical Physics, 335 (2015), 93-141.  doi: 10.1007/s00220-014-2129-3.  Google Scholar

[16]

P. Constantin and V. Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geometric and Functional Analysis, 22 (2012), 1289-1321.  doi: 10.1007/s00039-012-0172-9.  Google Scholar

[17]

M. Coti Zelati and P. Kalita, Minimality properties of set-valued processes and their pullback attractors, SIAM Journal on Mathematical Analysis, 47 (2015), 1530-1561.  doi: 10.1137/140978995.  Google Scholar

[18]

M. Coti Zelati and P. Kalita, Smooth attractors for weak solutions of the SQG equation with critical dissipation, Discrete and Continuous Dynamical Systems - Series B, 55 (2017), 1857-1873.  doi: 10.3934/dcdsb.2017110.  Google Scholar

[19]

A. Eden, C. Foiaş, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley & Sons/Masson, Chichester, New York, Brisbane, Toronto, Singapore/Paris, Milan, Barcelona, 1994.  Google Scholar

[20]

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.  Google Scholar

[21]

A. C. Eringen, Theory of thermomicrofluids, J. Math. Anal. Appl., 38 (1972), 480–496. Google Scholar

[22]

P. Kalita, J. A. Langa and G. Łukaszewicz, Micropolar meets Newtonian. The Rayleigh–Bénard problem, Physica D: Nonlinear Phenomena, accepted for publication doi: 10.1016/j.physd.2018.12.004.  Google Scholar

[23]

P. Kalita, G. Łukaszewicz and J. Siemianowski, Rayleigh–Bénard problem for thermomicropolar Fluids, Topological Methods in Nonlinear Analysis, accepted for publication doi: 10.12775/TMNA.2018.012.  Google Scholar

[24]

O. V. Kapustyan and J. Valero, Comparison between trajectory and global attractors for evolution systems without uniqueness of solutions, Int. J. Bifurcat. Chaos, 20 (2010), 2723–2734. doi: 10.1142/S0218127410027313.  Google Scholar

[25]

A. Kiselev and F. Nazarov, A variation on a theme of Cafarelli and Vasseur, Journal of Mathematical Sciences, 166 (2010), 31–39. doi: 10.1007/s10958-010-9842-z.  Google Scholar

[26]

G. Łukaszewicz, Micropolar Fluids. Theory and Applications, Birkhäuser Boston, Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[27]

G. Łukaszewicz, Long time behavior of 2D micropolar fluid flows, Mathematical and Computer Modelling, 34 (2001), 487–509. doi: 10.1016/S0895-7177(01)00078-4.  Google Scholar

[28]

G. Łukaszewicz, Asymptotic behavior of micropolar fluid flows, International Journal of Engineering Science, 41 (2003), 259–269. doi: 10.1016/S0020-7225(02)00208-2.  Google Scholar

[29]

V. S. Melnik and J. Valero, On attractors of multivalued semiflows and differential inclusions, Set-Valued Anal., 6 (1998), 83–111. doi: 10.1023/A:1008608431399.  Google Scholar

[30]

V. S. Melnik and J. Valero, Addendum to ''On Attractors of Multivalued Semiflows and Differential Inclusions'' [Set-Valued Anal. 6 (1998), 83–111], Set-Valued Anal., 16 (2008), 507–509. doi: 10.1007/s11228-007-0066-4.  Google Scholar

[31]

L. E. Payne and B. Straughan, Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermomicropolar fluid, International Journal of Engineering Science, 27 (1989), 827–836. doi: 10.1016/0020-7225(89)90049-9.  Google Scholar

[32]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, Ph.D. Thesis, 1995, The University of Chicago.  Google Scholar

[33]

J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, UK, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[34]

B. Straughan, The Energy Method, Stability, and Nonlinear Convection, Springer, 2004. doi: 10.1007/978-0-387-21740-6.  Google Scholar

[35]

A. Tarasińska, Global attractor for heat convection problem in a micropolar fluid, Mathematical Methods in the Applied Sciences, 29 (2006), 1215–1236. doi: 10.1002/mma.720.  Google Scholar

[36]

A. Tarasińska, Pullback attractor for heat convection problem in a micropolar fluid, Nonlinear Analysis: Real World Applications, 11 (2010), 1458–1471. doi: 10.1016/j.nonrwa.2009.03.003.  Google Scholar

[37]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Springer–Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[38]

R. Temam, Navier–Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia, Pennsylvania, 1983.  Google Scholar

[39]

J. Valero, Finite and infinite dimensional attractors of multi-valued reaction diffusion equations, Acta Math. Hungary, 88 (2000), 239–258. doi: 10.1023/A:1006769315268.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[3]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[4]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[5]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[6]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[7]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[8]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[9]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[10]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[11]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[12]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[13]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[14]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[15]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[16]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[19]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[20]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (113)
  • HTML views (122)
  • Cited by (2)

[Back to Top]