March  2019, 24(3): 1243-1258. doi: 10.3934/dcdsb.2019014

Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions

1. 

Department of Mathematical Modelling of Economic System, Igor Sikorsky Kyiv Polytechnic Institute, 37, Peremohy ave., 03056, Kyiv, Ukraine

2. 

Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, Volodymyrska Str. 60, 01033, Kyiv, Ukraine

* Corresponding author: I. O. Pyshnograiev

Received  November 2017 Revised  March 2018 Published  January 2019

In this work, we consider a dynamical system generated by a parabolic-hyperbolic equation with non-local boundary conditions. The optimal control problem for this system is studied using a notion of quasi-optimal solution. Existence and uniqueness of quasi-optimal control are proved.

Citation: Volodymyr O. Kapustyan, Ivan O. Pyshnograiev, Olena A. Kapustian. Quasi-optimal control with a general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with non-local boundary conditions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1243-1258. doi: 10.3934/dcdsb.2019014
References:
[1]

A. I. Egorov, Optimal Control for Linear Systems, Kyiv, Naukova dumka, 1988. Google Scholar

[2]

V. O. Kapustyan and I. O. Pyshnograiev, The conditions of existence and uniqueness of the solution of a parabolic-hyperbolic equation with nonlocal boundary conditions (Ukrainian), Science News NTUU ``KPI", 4 (2012), 72-86.   Google Scholar

[3]

V. O. Kapustyan and I. O. Pyshnograiev, Distributed control with the general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with nonlocal boundary conditions, Cybernetics and Systems Analysis, 51 (2015), 438-447.  doi: 10.1007/s10559-015-9735-8.  Google Scholar

[4]

V. O. Kapustyan and I. O. Pyshnograiev, Approximate optimal control for parabolic-hyperbolic equations with nonlocal boundary conditions and general quadratic quality criterion, Advances in Dynamical Systems and Control. Springer International Publishing, 69 (2016), 387-401.   Google Scholar

[5]

V. O. KapustyanO. A. Kapustian and O. K. Mazur, Problem of optimal control for the Poisson equation with nonlocal boundary conditions, Journal of Mathematical Sciences, 201 (2014), 325-334.  doi: 10.1007/s10958-014-1992-y.  Google Scholar

[6]

V. O. KapustyanO. V. KapustyanO. A. Kapustian and O. K. Mazur, The optimal control problem for parabolic equation with nonlocal boundary conditions in circular sector, Continuous and Distributed Systems II. Springer International Publishing, 30 (2015), 297-314.  doi: 10.1007/978-3-319-19075-4_18.  Google Scholar

[7]

V. S. Mel'nik and M. Z. Zgurovsky, Nonlinear Analysis and Control of Physical Processes and Fields, Berlin, Springer, 2004. doi: 10.1007/978-3-642-18770-4.  Google Scholar

[8]

M. Yu. Romanovsky and Yu. M. Romanovsky, Introduction to Econophysics. Statistical and Dynamic Models, Moscow, IKI, 2012. Google Scholar

[9]

P. N. Vabishchevich and A. A. Samarskii, Solving the problems of the dynamics of an incompressible fluid with alternating viscosity, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 12 (2000), 1813-1822.   Google Scholar

[10]

F. P. Vasil'ev, Numerical Methods of Solving Extremal Problems, Nauka, Moscow, 1980.  Google Scholar

[11]

L. A. Zolina, On a boundary-value problem for a model equation of hyperbolas-parabolic type, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 6 (1966), 991-1001.   Google Scholar

show all references

References:
[1]

A. I. Egorov, Optimal Control for Linear Systems, Kyiv, Naukova dumka, 1988. Google Scholar

[2]

V. O. Kapustyan and I. O. Pyshnograiev, The conditions of existence and uniqueness of the solution of a parabolic-hyperbolic equation with nonlocal boundary conditions (Ukrainian), Science News NTUU ``KPI", 4 (2012), 72-86.   Google Scholar

[3]

V. O. Kapustyan and I. O. Pyshnograiev, Distributed control with the general quadratic criterion in a special norm for systems described by parabolic-hyperbolic equations with nonlocal boundary conditions, Cybernetics and Systems Analysis, 51 (2015), 438-447.  doi: 10.1007/s10559-015-9735-8.  Google Scholar

[4]

V. O. Kapustyan and I. O. Pyshnograiev, Approximate optimal control for parabolic-hyperbolic equations with nonlocal boundary conditions and general quadratic quality criterion, Advances in Dynamical Systems and Control. Springer International Publishing, 69 (2016), 387-401.   Google Scholar

[5]

V. O. KapustyanO. A. Kapustian and O. K. Mazur, Problem of optimal control for the Poisson equation with nonlocal boundary conditions, Journal of Mathematical Sciences, 201 (2014), 325-334.  doi: 10.1007/s10958-014-1992-y.  Google Scholar

[6]

V. O. KapustyanO. V. KapustyanO. A. Kapustian and O. K. Mazur, The optimal control problem for parabolic equation with nonlocal boundary conditions in circular sector, Continuous and Distributed Systems II. Springer International Publishing, 30 (2015), 297-314.  doi: 10.1007/978-3-319-19075-4_18.  Google Scholar

[7]

V. S. Mel'nik and M. Z. Zgurovsky, Nonlinear Analysis and Control of Physical Processes and Fields, Berlin, Springer, 2004. doi: 10.1007/978-3-642-18770-4.  Google Scholar

[8]

M. Yu. Romanovsky and Yu. M. Romanovsky, Introduction to Econophysics. Statistical and Dynamic Models, Moscow, IKI, 2012. Google Scholar

[9]

P. N. Vabishchevich and A. A. Samarskii, Solving the problems of the dynamics of an incompressible fluid with alternating viscosity, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 12 (2000), 1813-1822.   Google Scholar

[10]

F. P. Vasil'ev, Numerical Methods of Solving Extremal Problems, Nauka, Moscow, 1980.  Google Scholar

[11]

L. A. Zolina, On a boundary-value problem for a model equation of hyperbolas-parabolic type, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 6 (1966), 991-1001.   Google Scholar

[1]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[4]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[5]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[6]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[7]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[18]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (103)
  • Cited by (1)

[Back to Top]