-
Previous Article
Existence of solutions for space-fractional parabolic hemivariational inequalities
- DCDS-B Home
- This Issue
-
Next Article
Forward attracting sets of reaction-diffusion equations on variable domains
On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity
1. | Oles Honchar Dnipro National University, Department of Differential Equations, Gagarin av., 72, 49010 Dnipro, Ukraine |
2. | Dnipro University of Technology, Department of System Analysis and Control, Yavornitskii av., 19, 49005 Dnipro, Ukraine |
3. | Institute for Applied System Analysis, National Academy of Sciences and Ministry of Education and Science of Ukraine, Peremogy av., 37/35, IASA, 03056 Kyiv, Ukraine |
We study an optimal control problem for one class of non-linear elliptic equations with $p$-Laplace operator and $L^1$-nonlinearity. We deal with such case of nonlinearity when we cannot expect to have a solution of the state equation for any given control. After defining a suitable functional class in which we look for solutions, we reformulate the original problem and prove the existence of optimal pairs. In order to ensure the validity of such reformulation, we provide its substantiation using a special family of fictitious optimal control problems. The idea to involve the fictitious optimization problems was mainly inspired by the brilliant book of V.S. Mel'nik and V.I. Ivanenko "Variational Methods in Control Problems for the Systems with Distributed Parameters", Kyiv, 1998.
References:
[1] |
L. Boccardo and F. Murat,
Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Theory, Methods, Appl., 19 (1992), 581-597.
doi: 10.1016/0362-546X(92)90023-8. |
[2] |
E. Casas, O. Kavian and J. P. Puel,
Optimal control of an ill-posed elliptic semilinear equation with an exponential nonlinearity, ESAIM: Control, Optimization and Calculus of Variations, 3 (1998), 361-380.
doi: 10.1051/cocv:1998116. |
[3] |
E. Casas, P. I. Kogut and G. Leugering,
Approximation of optimal control problems in the coefficient for the $p$-Laplace equation. I. Convergence result, SIAM Journal on Control and Optimization, 54 (2016), 1406-1422.
doi: 10.1137/15M1028108. |
[4] |
S. Chandrasekhar,
An Introduction to the Study of Stellar Structures, Dover Publications, Inc., New York, N. Y., 1957. |
[5] |
M. G. Crandall and P. H. Rabinowitz,
Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[6] |
J. Dolbeault and R. Stańczy,
Non-existence and uniqueness results for supercritical semilinear elliptic equations, Annales Henri Poincaré, 10 (2010), 1311-1333.
doi: 10.1007/s00023-009-0016-9. |
[7] |
R. Ferreira, A. De Pablo and J. L. Vazquez,
Classification of blow-up with nonlinear diffusion and localized reaction, J. Differential Equations, 231 (2006), 195-211.
doi: 10.1016/j.jde.2006.04.017. |
[8] |
D. A. Franck-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Second edition, Plenum Press, 1969. Google Scholar |
[9] |
H. Fujita,
On the blowing up of the solutions to the Cauchy problem for $u_t = Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 13 (1996), 109-124.
|
[10] |
T. Gallouët, F. Mignot and J. P. Puel, Quelques résultats sur le problème $-Δ u = λ e^u$, C. R.
Acad. Sci. Paris, Série I, 307 (1988), 289–292. |
[11] |
I. M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc.
Transl., Ser. 2, 29 (1963), 295–381.
doi: 10.1090/trans2/029/12. |
[12] |
V. I. Ivanenko and V. S. Mel'nik,
Variational Methods in Control Problems for the Systems with Distributed Parameters, Naukova Dumka, Kyiv, 1988 (in Russian). |
[13] |
D. Kinderlehrer and G. Stampacchia,
An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. |
[14] |
P. I. Kogut and G. Leugering,
Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Series: Systems and Control, Birkhäuser, Boston, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[15] |
P. I. Kogut, R. Manzo and A. O. Putchenko,
On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type, Boundary Value Problems, 2016 (2016), 1-32.
doi: 10.1186/s13661-016-0717-1. |
[16] |
P. I. Kogut and A. O. Putchenko, On approximate solutions to one class of non-linear Dirichlet elliptic boundary value problems, Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU, 24 (2016), 27-25. Google Scholar |
[17] |
P. I. Kogut and V. S. Mel'nik, On one class of extremum problems for nonlinear operator systems, Cybern. Syst. Anal., 34 (1998), 894-904. Google Scholar |
[18] |
P. I. Kogut and V. S. Mel'nik,
On weak compactness of bounded sets in Banach and locally convex spaces, Ukrainian Mathematical Journal, 52 (2001), 837-846.
doi: 10.1007/BF02591778. |
[19] |
P. I. Kogut and O. P. Kupenko, On attainability of optimal solutions for linear elliptic equations with unbounded coefficients, Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU, 20 (2012), 63-82. Google Scholar |
[20] |
O. P. Kupenko and R. Manzo,
On optimal controls in coefficients for ill-posed non-linear elliptic Dirichlet boundary value problems, Discrete and Continuous Dynamic Systems. Series B, 23 (2018), 1363-1393.
doi: 10.3934/dcdsb.2018155. |
[21] |
J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems, Dunod-Gauthier-Villars, Paris 1969. Google Scholar |
[22] |
F. Mignot and J. P. Puel,
Sur une classe de problémes non linéaires avec nonlinéarité positive, croissante, convexe, Comm. in PDE, 5 (1980), 791-836.
doi: 10.1080/03605308008820155. |
[23] |
I. Peral, Multiplicity of Solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Miramare–Trieste, 1997. Google Scholar |
[24] |
R. G. Pinsky,
Existence and Nonexistence of global solutions $u_t=Δ u+a(x) u^p$ in $\mathbb{R}^d$, J. of Differential Equations, 133 (1997), 152-177.
doi: 10.1006/jdeq.1996.3196. |
[25] |
D. H. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
show all references
References:
[1] |
L. Boccardo and F. Murat,
Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Theory, Methods, Appl., 19 (1992), 581-597.
doi: 10.1016/0362-546X(92)90023-8. |
[2] |
E. Casas, O. Kavian and J. P. Puel,
Optimal control of an ill-posed elliptic semilinear equation with an exponential nonlinearity, ESAIM: Control, Optimization and Calculus of Variations, 3 (1998), 361-380.
doi: 10.1051/cocv:1998116. |
[3] |
E. Casas, P. I. Kogut and G. Leugering,
Approximation of optimal control problems in the coefficient for the $p$-Laplace equation. I. Convergence result, SIAM Journal on Control and Optimization, 54 (2016), 1406-1422.
doi: 10.1137/15M1028108. |
[4] |
S. Chandrasekhar,
An Introduction to the Study of Stellar Structures, Dover Publications, Inc., New York, N. Y., 1957. |
[5] |
M. G. Crandall and P. H. Rabinowitz,
Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741. |
[6] |
J. Dolbeault and R. Stańczy,
Non-existence and uniqueness results for supercritical semilinear elliptic equations, Annales Henri Poincaré, 10 (2010), 1311-1333.
doi: 10.1007/s00023-009-0016-9. |
[7] |
R. Ferreira, A. De Pablo and J. L. Vazquez,
Classification of blow-up with nonlinear diffusion and localized reaction, J. Differential Equations, 231 (2006), 195-211.
doi: 10.1016/j.jde.2006.04.017. |
[8] |
D. A. Franck-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, Second edition, Plenum Press, 1969. Google Scholar |
[9] |
H. Fujita,
On the blowing up of the solutions to the Cauchy problem for $u_t = Δ u+u^{1+α}$, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 13 (1996), 109-124.
|
[10] |
T. Gallouët, F. Mignot and J. P. Puel, Quelques résultats sur le problème $-Δ u = λ e^u$, C. R.
Acad. Sci. Paris, Série I, 307 (1988), 289–292. |
[11] |
I. M. Gelfand, Some problems in the theory of quasi-linear equations, Amer. Math. Soc.
Transl., Ser. 2, 29 (1963), 295–381.
doi: 10.1090/trans2/029/12. |
[12] |
V. I. Ivanenko and V. S. Mel'nik,
Variational Methods in Control Problems for the Systems with Distributed Parameters, Naukova Dumka, Kyiv, 1988 (in Russian). |
[13] |
D. Kinderlehrer and G. Stampacchia,
An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980. |
[14] |
P. I. Kogut and G. Leugering,
Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Series: Systems and Control, Birkhäuser, Boston, 2011.
doi: 10.1007/978-0-8176-8149-4. |
[15] |
P. I. Kogut, R. Manzo and A. O. Putchenko,
On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type, Boundary Value Problems, 2016 (2016), 1-32.
doi: 10.1186/s13661-016-0717-1. |
[16] |
P. I. Kogut and A. O. Putchenko, On approximate solutions to one class of non-linear Dirichlet elliptic boundary value problems, Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU, 24 (2016), 27-25. Google Scholar |
[17] |
P. I. Kogut and V. S. Mel'nik, On one class of extremum problems for nonlinear operator systems, Cybern. Syst. Anal., 34 (1998), 894-904. Google Scholar |
[18] |
P. I. Kogut and V. S. Mel'nik,
On weak compactness of bounded sets in Banach and locally convex spaces, Ukrainian Mathematical Journal, 52 (2001), 837-846.
doi: 10.1007/BF02591778. |
[19] |
P. I. Kogut and O. P. Kupenko, On attainability of optimal solutions for linear elliptic equations with unbounded coefficients, Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU, 20 (2012), 63-82. Google Scholar |
[20] |
O. P. Kupenko and R. Manzo,
On optimal controls in coefficients for ill-posed non-linear elliptic Dirichlet boundary value problems, Discrete and Continuous Dynamic Systems. Series B, 23 (2018), 1363-1393.
doi: 10.3934/dcdsb.2018155. |
[21] |
J.-L. Lions, Some Methods of Solving Non-Linear Boundary Value Problems, Dunod-Gauthier-Villars, Paris 1969. Google Scholar |
[22] |
F. Mignot and J. P. Puel,
Sur une classe de problémes non linéaires avec nonlinéarité positive, croissante, convexe, Comm. in PDE, 5 (1980), 791-836.
doi: 10.1080/03605308008820155. |
[23] |
I. Peral, Multiplicity of Solutions for the p-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Miramare–Trieste, 1997. Google Scholar |
[24] |
R. G. Pinsky,
Existence and Nonexistence of global solutions $u_t=Δ u+a(x) u^p$ in $\mathbb{R}^d$, J. of Differential Equations, 133 (1997), 152-177.
doi: 10.1006/jdeq.1996.3196. |
[25] |
D. H. Sattinger,
Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math., 21 (1972), 979-1000.
doi: 10.1512/iumj.1972.21.21079. |
[1] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[2] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[5] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[6] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[7] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[9] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[10] |
Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020054 |
[11] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[12] |
Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040 |
[13] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[14] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[15] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[16] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[17] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[18] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[19] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[20] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]