This paper is devoted to the existence of solutions for space-fractional parabolic hemivariational inequalities by means of the well-known surjectivity result for multivalued ($S_+$) type mappings.
Citation: |
G. Alberti
and G. Bellettini
, A nonlocal anisotropic model for phase transitions. I. The optimal
profile problem, Math. Ann., 310 (1998)
, 527-560.
doi: 10.1007/s002080050159.![]() ![]() ![]() |
|
X. Cabre
and J. Sola-Morales
, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005)
, 1678-1732.
doi: 10.1002/cpa.20093.![]() ![]() ![]() |
|
L. Caffarelli
, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979)
, 1067-1075.
doi: 10.1080/03605307908820119.![]() ![]() ![]() |
|
L. Caffarelli
, J. M. Roquejoffre
and Y. Sire
, Variational problems in free boundaries for the fractional Laplacian, J. Eur. Math. Soc., 12 (2010)
, 1151-1179.
doi: 10.4171/JEMS/226.![]() ![]() ![]() |
|
L. Caffarelli
and A. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics. Second Series, 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
K. C. Chang
, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981)
, 102-129.
doi: 10.1016/0022-247X(81)90095-0.![]() ![]() ![]() |
|
F. H. Clarke,
Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
![]() ![]() |
|
N. Costea
and C. Varga
, Systems of nonlinear hemivariational inequalities and applications, Topological Methods in Nonlinear Analysis, 41 (2013)
, 39-65.
![]() ![]() |
|
W. Craig
and M. Groves
, Hamiltonian long-wave approximations to the water-wave problem, Wave Motion, 19 (1994)
, 367-389.
doi: 10.1016/0165-2125(94)90003-5.![]() ![]() ![]() |
|
W. Craig
, U. Schanz
and C. Sulem
, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. H. Poincare, Anal. Non Lineaire, 14 (1997)
, 615-667.
doi: 10.1016/S0294-1449(97)80128-X.![]() ![]() ![]() |
|
L. Gasinski and N. S. Papageorgiou,
Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC, Boca Raton, London, New York, Washington, DC, 2005.
![]() ![]() |
|
S. Hu and N. S. Papageorgiou,
Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997.
doi: 10.1007/978-1-4615-6359-4.![]() ![]() ![]() |
|
Z. H. Liu
, A class of evolution hamivariational inequalities, Nonlinear Analysis, TMA, 36 (1999)
, 91-100.
doi: 10.1016/S0362-546X(98)00016-9.![]() ![]() ![]() |
|
Z. H. Liu
, Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities, Inverse Problems, 21 (2005)
, 13-20.
doi: 10.1088/0266-5611/21/1/002.![]() ![]() ![]() |
|
Z. H. Liu
, Existence results for quasilinear parabolic hemivariational inequalities, J. Differential Equations, 244 (2008)
, 1395-1409.
doi: 10.1016/j.jde.2007.09.001.![]() ![]() ![]() |
|
Z. H. Liu
, X. W. Li
and D. Motreanu
, Approximate Controllability for Nonlinear Evolution Hemivariational Inequalities in Hilbert Spaces, SIAM Journal on Control and Optimization, 53 (2015)
, 3228-3244.
doi: 10.1137/140994058.![]() ![]() ![]() |
|
Z. H. Liu
and X. W. Li
, Approximate controllability for a class of hemivariational inequalities, Nonlinear Analysis: Real World Applications, 22 (2015)
, 581-591.
doi: 10.1016/j.nonrwa.2014.08.010.![]() ![]() ![]() |
|
Z. H. Liu
, Anti-periodic solutions to nonlinear evolution equations, Journal of functional analysis, 258 (2010)
, 2026-2033.
doi: 10.1016/j.jfa.2009.11.018.![]() ![]() ![]() |
|
Z. H. Liu
and J. Tan
, Nonlocal Elliptic Hemivariational inequalities, Electronic Journal of Qualitative Theory of Differential Equations, 66 (2017)
, 1-7.
doi: 10.14232/ejqtde.2017.1.66.![]() ![]() ![]() |
|
Z. H. Liu
and S. S. Zhang
, On the degree theory for multivalued ($S_+$) type mappings, Applied Mathematics and Mechanics, 19 (1998)
, 1141-1149.
doi: 10.1007/BF02456635.![]() ![]() ![]() |
|
A. Majda
and E. Tabak
, A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow, Nonlinear Phenomena in Ocean Dynamics (Los Alamos, NM, 1995), Phys. D., 98 (1996)
, 515-522.
doi: 10.1016/0167-2789(96)00114-5.![]() ![]() ![]() |
|
S. Migórski, A. Ochal and M. Sofonea,
Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5.![]() ![]() ![]() |
|
D. Motreanu and V. Radulescu,
Variational and Non-Variational Methods in Nonlinear Analysis and Boundary Value Problems. Nonconvex Optimization and its Applications, 67. Kluwer Academic Publishers, Dordrecht, 2003.
doi: 10.1007/978-1-4757-6921-0.![]() ![]() ![]() |
|
R. Musina
and A. I. Nazarov
, Variational inequalities for the spectral fractional Laplacian, Comp. Math. Math. Phy., 57 (2017)
, 373-386.
doi: 10.1134/S0965542517030113.![]() ![]() ![]() |
|
E. Di Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
O. Savin
and E. Valdinoci
, Elliptic PDEs with fibered nonlinearities, J. Geom. Anal., 19 (2009)
, 420-432.
doi: 10.1007/s12220-008-9064-5.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012)
, 887-898.
doi: 10.1016/j.jmaa.2011.12.032.![]() ![]() ![]() |
|
R. Servadei
and E. Valdinoci
, Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators, Rev. Mat. Ibero., 29 (2013)
, 1091-1126.
doi: 10.4171/RMI/750.![]() ![]() ![]() |
|
A. Signorini
, Questioni di elasticita non linearizzata e semilinearizzata, Rendiconti di Matematica e Delle Sue Applicazioni, 18 (1959)
, 95-139.
![]() ![]() |
|
Y. Sire
and E. Valdinoci
, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009)
, 1842-1864.
doi: 10.1016/j.jfa.2009.01.020.![]() ![]() ![]() |
|
J. Stoker,
Water Waves: The Mathematical Theory with Applications, Pure and Applied Mathematics, Vol. IV., Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957.
![]() ![]() |
|
J. Tan
, Positive solutions for non local elliptic problems, Disc. Cont. Dyna. Sys., 33 (2013)
, 837-859.
doi: 10.3934/dcds.2013.33.837.![]() ![]() ![]() |
|
K. Teng
, Two nontrivial solutions for hemivariational inequalities driven by nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 14 (2013)
, 867-874.
doi: 10.1016/j.nonrwa.2012.08.008.![]() ![]() ![]() |
|
J. Toland
, The Peierls-Nabarro and Benjamin-Ono equations, J. Funct. Anal., 145 (1997)
, 136-150.
doi: 10.1006/jfan.1996.3016.![]() ![]() ![]() |
|
L. Xi
, Y. Huang
and Y. Zhou
, The multiplicity of nontrivial solutions for hemivariational inequalities involving nonlocal elliptic operators, Nonlinear Analysis: Real World Applications, 21 (2015)
, 87-98.
doi: 10.1016/j.nonrwa.2014.06.009.![]() ![]() ![]() |
|
E. Zeidler,
Nonlinear Functional Analysis and Its Applications, II/A and II/B, Springer, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.![]() ![]() ![]() |