[1]
|
S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Eqns., 1 (2001), 69-84.
doi: 10.1007/PL00001365.
|
[2]
|
S. Aizicovici, E. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci., 24 (2001), 277-287.
doi: 10.1002/mma.215.
|
[3]
|
D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractors for the phase-field model, Appl. Anal., 49 (1993), 197-212.
doi: 10.1080/00036819108840173.
|
[4]
|
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
doi: 10.1007/978-1-4612-4048-8.
|
[5]
|
G. Caginalp, An analysis of a phase-field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.
doi: 10.1007/BF00254827.
|
[6]
|
J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 2 (1958), 258-267.
|
[7]
|
P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627.
|
[8]
|
P. J. Chen, M. E. Gurtin and W. O. Williams, A note on a non-simple heat conduction, J. Appl. Math. Phys. (ZAMP), 19 (1968), 969-970.
doi: 10.1007/BF01602278.
|
[9]
|
P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112.
doi: 10.1007/BF01591120.
|
[10]
|
L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129.
|
[11]
|
L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.
doi: 10.1007/s10492-009-0008-6.
|
[12]
|
L. Cherfils, S. Gatti and A. Miranville, A doubly nonlinear parabolic equation with a singular potential, Discrete Contin. Dyn. Systems S, 4 (2011), 51-66.
doi: 10.3934/dcdss.2011.4.51.
|
[13]
|
R. Chill, E Fasangovà and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.
doi: 10.1002/mana.200410431.
|
[14]
|
C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving medis, Phys. Review Letters, 94 (2005), 154301.
|
[15]
|
B. Doumbé, Etude de modèles de champs de phase de type Caginalp, Université de Poitiers, 2013.
|
[16]
|
A. S. El-Karamany and M. A. Ezzat, On the two-temperature Green-Naghdi thermoelasticity theories, J. Thermal Stresses, 34 (2011), 1207-1226.
doi: 10.1080/01495739.2011.608313.
|
[17]
|
C. G. Gal and M. Grasselli, The nonisothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Systems A, 22 (2008), 1009-1040.
doi: 10.3934/dcds.2008.22.1009.
|
[18]
|
S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in Differential Equations: Inverse and Direct Problems (Proceedings of the Workshop "Evolutiob Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004), A series of Lecture notes in pure and applied mathematics, 251, A. Favini and A. Lorenzi eds., Chapman & Hall, 2006,149–170.
doi: 10.1201/9781420011135.ch9.
|
[19]
|
M. Grasselli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475-1509.
doi: 10.1002/mana.200510560.
|
[20]
|
M. Grasselli, A. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Systems A, 28 (2010), 67-98.
doi: 10.3934/dcds.2010.28.67.
|
[21]
|
M. Grasselli and V. Pata, Existence of a universal attractor for a fully hyperbolic phase-field system, J. Evol. Eqns., 4 (2004), 27-51.
doi: 10.1007/s00028-003-0074-2.
|
[22]
|
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.
doi: 10.4171/ZAA/1277.
|
[23]
|
A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Society London A, 432 (1991), 171-194.
doi: 10.1098/rspa.1991.0012.
|
[24]
|
F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, Freefem++ Manual, 2012.
|
[25]
|
J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149-169.
doi: 10.1016/j.jmaa.2007.09.041.
|
[26]
|
J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156-1182.
doi: 10.1002/mma.1092.
|
[27]
|
A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems S, 7 (2014), 271-306.
doi: 10.3934/dcdss.2014.7.271.
|
[28]
|
A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA, 71 (2009), 2278-2290.
doi: 10.1016/j.na.2009.01.061.
|
[29]
|
A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894.
doi: 10.1080/00036810903042182.
|
[30]
|
A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Optim., 63 (2011), 133-150.
doi: 10.1007/s00245-010-9114-9.
|
[31]
|
A. Miranville and R. Quintanilla, A type $\rm III$ phase-field system with a logarithmic potential, Appl. Math. Letters, 24 (2011), 1003-1008.
doi: 10.1016/j.aml.2011.01.016.
|
[32]
|
A. Miranville and R. Quintanilla, A generalization of the Allen-Cahn equation, IMA J. Appl. Math., 80 (2015), 410-430.
doi: 10.1093/imamat/hxt044.
|
[33]
|
A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 74 (2016), 375-398.
doi: 10.1090/qam/1430.
|
[34]
|
A. Miranville and R. Quintanilla, On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Math. Methods Appl. Sci., 39 (2016), 4385-4397.
doi: 10.1002/mma.3867.
|
[35]
|
A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electronic J. Diff. Eqns., 2002 (2002), 1-28.
|
[36]
|
A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.
doi: 10.1002/mma.590.
|
[37]
|
R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.
doi: 10.1080/01495730903310599.
|
[38]
|
G. Sadaka, Solution of 2D Boussinesq systems with FreeFem++: The flat bottom case, J. Numer. Math., 20 (2012), 303-324.
doi: 10.1515/jnum-2012-0016.
|
[39]
|
H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71 (2006), 383-390.
doi: 10.1093/imamat/hxh101.
|
[40]
|
Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. Pure Appl. Anal., 4 (2005), 683-693.
doi: 10.3934/cpaa.2005.4.683.
|