\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials

  • * Corresponding author: Alain Miranville

    * Corresponding author: Alain Miranville 
Abstract / Introduction Full Text(HTML) Figure(8) / Table(12) Related Papers Cited by
  • Our aim in this article is to study generalizations of the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures for heat conduction and with logarithmic nonlinear terms. We obtain well-posedness results and study the asymptotic behavior of the system. In particular, we prove the existence of the global attractor. Furthermore, we give some numerical simulations, obtained with the $\mathtt{FreeFem++}$ software [24], comparing the nonconserved Caginalp phase-field model with regular and logarithmic nonlinear terms.

    Mathematics Subject Classification: 35B45, 35K55, 35L15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Solution $ u $ with $ f_H = .1 $ and logarithmic potential

    Figure 2.  Solution $u$ with $f_H = .1$ and cubic potential

    Figure 3.  Solution $u$ with $f_H = .1$ and logarithmic potential

    Figure 4.  Solution $u$ with $f_H = .1$ and cubic potential

    Figure 5.  Solution $u$ with $f_H = 1.5$ and logarithmic potential

    Figure 6.  Solution $u$ with $f_H = 1.5$ and cubic potential

    Figure 7.  Solution $H$ with $f_H = 1.5$ and logarithmic potential

    Figure 8.  Solution $H$ with $f_H = 1.5$ and cubic potential

    Table 1.  $ L^2 $, $ H^1 $ norm and error for $ u $ and $ H $ for the nonconserved Caginalp phase-field system with $ \varepsilon = .1,\ \tau = .03 $ and $ f(s) = .83(s^3-.5^2s) $

    $ 10^{2}\cdot\delta t $ CPU time $ N_{L^2}(u) $ rate $ N_{L^2}(H) $ rate $ N_{H^1}(u) $ rate $ N_{H^1}(H) $ rate
    1/1 00:00:02 0.00147 - 0.00124 - 0.0573 - 0.05544 -
    1/4 00:00:22 0.00038 0.98 0.0003 0.98 0.02927 0.48 0.02828 0.49
    1/16 00:05:58 9.5e-05 0.99 8.1e-05 0.99 0.01472 0.49 0.01422 0.49
    1/64 01:50:22 2.4e-05 0.99 2e-05 0.99 0.00737 0.49 0.00711 0.49
    1/256 22:06:19 6e-06 1 5e-06 0.99 0.00369 0.5 0.00357 0.49
     | Show Table
    DownLoad: CSV

    Table 2.  $L^2$, $H^1$ norm and error for $u$ and $H$ for the nonconserved Caginalp phase-field system with $\varepsilon = .1, \ \tau = .03$ and $f(s) = -2 \kappa_0 s+\kappa_1 \ln\left(\dfrac{1+s}{1-s}\right)$.

    $10^{2}\cdot\delta t$CPU time$N_{L^2}(u)$rate$N_{L^2}(H)$rate$N_{H^1}(u)$rate$N_{H^1}(H)$rate
    1/100:00:020.00146-0.00124-0.05725-0.05544-
    1/400:00:250.000380.980.00030.980.029270.480.028280.49
    1/1600:07:449.5e-050.998.1e-050.990.014720.490.014220.49
    1/6401:52:092.4e-050.992e-050.990.007370.490.007110.49
    1/25623:06:556e-0615e-060.990.003690.50.003570.49
     | Show Table
    DownLoad: CSV

    Table 3.  $L^2$, $H^1$ norm and error for $u$ and $H$ for the nonconserved Caginalp phase-field system with $\varepsilon = .01, \ \tau = .03$ and $f(s) = .83(s^3-.5^2s)$

    $10^{2}\cdot\delta t$CPU time$N_{L^2}(u)$rate$N_{L^2}(H)$rate$N_{H^1}(u)$rate$N_{H^1}(H)$rate
    1/100:00:010.00042-0.00039-0.02458-0.02397-
    1/400:00:220.000110.980.00010.980.012490.490.012150.49
    1/1600:07:092.7e-050.992.5e-050.990.006270.490.006110.49
    1/6401:27:207e-060.996e-060.990.003140.490.003060.49
    1/25622:16:472e-0612e-060.990.001570.50.001540.49
     | Show Table
    DownLoad: CSV

    Table 4.  $L^2$, $H^1$ norm and error for $u$ and $H$ for the nonconserved Caginalp phase-field system with $\varepsilon = .01, \ \tau = .03$ and $f(s) = -2 \kappa_0 s+\kappa_1 \ln\left(\dfrac{1+s}{1-s}\right)$.

    $10^{2}\cdot\delta t$CPU time$N_{L^2}(u)$rate$N_{L^2}(H)$rate$N_{H^1}(u)$rate$N_{H^1}(H)$rate
    1/100:00:010.00042-0.00039-0.02457-0.02397-
    1/400:00:240.000110.980.00010.980.012480.490.012150.49
    1/1600:07:412.7e-050.992.5e-050.990.006270.490.006110.49
    1/6401:26:117e-060.996e-060.990.003140.490.003060.49
    1/25623:06:302e-0612e-060.990.001570.50.001540.49
     | Show Table
    DownLoad: CSV

    Table 5.  $L^2$, $H^1$ norm and error for $u$ and $H$ for the nonconserved Caginalp phase-field system with $\varepsilon = .001, \ \tau = .03$ and $f(s) = .83(s^3-.5^2s)$.

    $10^{2}\cdot\delta t$CPU time$N_{L^2}(u)$rate$N_{L^2}(H)$rate$N_{H^1}(u)$rate$N_{H^1}(H)$rate
    1/100:00:010.00013-0.00012-0.01227-0.01186-
    1/400:00:223.4e-050.983.2e-050.980.006250.490.006030.49
    1/1600:07:199e-060.998e-060.990.003140.490.003030.49
    1/6401:29:472e-060.992e-060.990.001570.490.001520.49
    1/25622:23:291e-0611e-060.990.000790.50.000760.49
     | Show Table
    DownLoad: CSV

    Table 6.  $L^2$, $H^1$ norm and error for $u$ and $H$ for the nonconserved Caginalp phase-field system with $\varepsilon = .001, \ \tau = .03$ and $f(s) = -2 \kappa_0 s+\kappa_1 \ln\left(\dfrac{1+s}{1-s}\right)$.

    $10^{2}\cdot\delta t$CPU time$N_{L^2}(u)$rate$N_{L^2}(H)$rate$N_{H^1}(u)$rate$N_{H^1}(H)$rate
    1/100:00:010.00013-0.00012-0.01226-0.011863-
    1/400:00:243.4e-050.983.2e-050.980.006240.490.006030.49
    1/1600:07:449e-060.998e-060.990.003140.490.003030.49
    1/6401:29:122e-060.992e-060.990.001570.490.001520.49
    1/25623:22:361e-0611e-060.990.000790.50.000760.49
     | Show Table
    DownLoad: CSV

    Table 7.  Comparison of the convergence of the solution $u$ with $\varepsilon = .1$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    logexplose$-.41$$[-.37, .37]$$.41$.44.62$.94$explose
    polexplose$-.40$$[-.37, .37]$$.40$.43.64exploseexplose
     | Show Table
    DownLoad: CSV

    Table 8.  Comparison of the convergence of the solution $u$ with $\varepsilon = .01$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    log$-.76$$[-.49, .49]$$[-.49, .49]$$[-.49, .49]$.49.52$.67$$.76$
    pol$-.86$$[-.49, .49]$$[-.49, .49]$$[-.49, .49]$$.49$$.52$$.70$$.86$
     | Show Table
    DownLoad: CSV

    Table 9.  Comparison of the convergence of the solution $u$ with $\varepsilon = .001$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    log$-.56$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$.53$$.56$
    pol$-.57$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$[-.50, .50]$$.53$$.57$
     | Show Table
    DownLoad: CSV

    Table 10.  Comparison of the convergence of the solution $u$ with $\varepsilon = .1$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    logexploseexploseexploseexplose.92.94.99explose
    polexploseexploseexploseexploseexplose.94exploseexplose
     | Show Table
    DownLoad: CSV

    Table 11.  comp_log_eps_0p01_ln6} Comparison of the convergence of the solution $u$ with $\varepsilon = .01$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    log-.95$[-.93, .93]$$[-.93, .93]$$[-.93, .93]$$[-.93, .93]$explose.94.95
    polexploseexploseexploseexploseexploseexplose.96explose
     | Show Table
    DownLoad: CSV

    Table 12.  Comparison of the convergence of the solution $u$ with $\varepsilon = .001$.

    $f_H$$-35$$-.1$$0$$.1$$.2$$1.5$$15$$35$
    log-.93$[-.93, .93]$$[-.93, .93]$$[-.93, .93]$$[-.93, .93]$$[-.93, .93]$explose.93
    pol-.94exploseexploseexploseexploseexploseexplose.94
     | Show Table
    DownLoad: CSV
  • [1] S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Eqns., 1 (2001), 69-84.  doi: 10.1007/PL00001365.
    [2] S. AizicoviciE. Feireisl and F. Issard-Roch, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci., 24 (2001), 277-287.  doi: 10.1002/mma.215.
    [3] D. BrochetX. Chen and D. Hilhorst, Finite dimensional exponential attractors for the phase-field model, Appl. Anal., 49 (1993), 197-212.  doi: 10.1080/00036819108840173.
    [4] M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. doi: 10.1007/978-1-4612-4048-8.
    [5] G. Caginalp, An analysis of a phase-field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.  doi: 10.1007/BF00254827.
    [6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system Ⅰ. Interfacial free energy, J. Chem. Phys., 2 (1958), 258-267. 
    [7] P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627. 
    [8] P. J. ChenM. E. Gurtin and W. O. Williams, A note on a non-simple heat conduction, J. Appl. Math. Phys. (ZAMP), 19 (1968), 969-970.  doi: 10.1007/BF01602278.
    [9] P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112.  doi: 10.1007/BF01591120.
    [10] L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129. 
    [11] L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.  doi: 10.1007/s10492-009-0008-6.
    [12] L. CherfilsS. Gatti and A. Miranville, A doubly nonlinear parabolic equation with a singular potential, Discrete Contin. Dyn. Systems S, 4 (2011), 51-66.  doi: 10.3934/dcdss.2011.4.51.
    [13] R. ChillE Fasangovà and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279 (2006), 1448-1462.  doi: 10.1002/mana.200410431.
    [14] C. I. Christov and P. M. Jordan, Heat conduction paradox involving second-sound propagation in moving medis, Phys. Review Letters, 94 (2005), 154301.
    [15] B. Doumbé, Etude de modèles de champs de phase de type Caginalp, Université de Poitiers, 2013.
    [16] A. S. El-Karamany and M. A. Ezzat, On the two-temperature Green-Naghdi thermoelasticity theories, J. Thermal Stresses, 34 (2011), 1207-1226.  doi: 10.1080/01495739.2011.608313.
    [17] C. G. Gal and M. Grasselli, The nonisothermal Allen-Cahn equation with dynamic boundary conditions, Discrete Contin. Dyn. Systems A, 22 (2008), 1009-1040.  doi: 10.3934/dcds.2008.22.1009.
    [18] S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in Differential Equations: Inverse and Direct Problems (Proceedings of the Workshop "Evolutiob Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004), A series of Lecture notes in pure and applied mathematics, 251, A. Favini and A. Lorenzi eds., Chapman & Hall, 2006,149–170. doi: 10.1201/9781420011135.ch9.
    [19] M. GrasselliA. MiranvilleV. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280 (2007), 1475-1509.  doi: 10.1002/mana.200510560.
    [20] M. GrasselliA. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Systems A, 28 (2010), 67-98.  doi: 10.3934/dcds.2010.28.67.
    [21] M. Grasselli and V. Pata, Existence of a universal attractor for a fully hyperbolic phase-field system, J. Evol. Eqns., 4 (2004), 27-51.  doi: 10.1007/s00028-003-0074-2.
    [22] M. GrasselliH. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.  doi: 10.4171/ZAA/1277.
    [23] A. E. Green and P. M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Royal Society London A, 432 (1991), 171-194.  doi: 10.1098/rspa.1991.0012.
    [24] F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, Freefem++ Manual, 2012.
    [25] J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149-169.  doi: 10.1016/j.jmaa.2007.09.041.
    [26] J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156-1182.  doi: 10.1002/mma.1092.
    [27] A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems S, 7 (2014), 271-306.  doi: 10.3934/dcdss.2014.7.271.
    [28] A. Miranville and R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA, 71 (2009), 2278-2290.  doi: 10.1016/j.na.2009.01.061.
    [29] A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894.  doi: 10.1080/00036810903042182.
    [30] A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Appl. Math. Optim., 63 (2011), 133-150.  doi: 10.1007/s00245-010-9114-9.
    [31] A. Miranville and R. Quintanilla, A type $\rm III$ phase-field system with a logarithmic potential, Appl. Math. Letters, 24 (2011), 1003-1008.  doi: 10.1016/j.aml.2011.01.016.
    [32] A. Miranville and R. Quintanilla, A generalization of the Allen-Cahn equation, IMA J. Appl. Math., 80 (2015), 410-430.  doi: 10.1093/imamat/hxt044.
    [33] A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 74 (2016), 375-398.  doi: 10.1090/qam/1430.
    [34] A. Miranville and R. Quintanilla, On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Math. Methods Appl. Sci., 39 (2016), 4385-4397.  doi: 10.1002/mma.3867.
    [35] A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electronic J. Diff. Eqns., 2002 (2002), 1-28. 
    [36] A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28 (2005), 709-735.  doi: 10.1002/mma.590.
    [37] R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 32 (2009), 1270-1278.  doi: 10.1080/01495730903310599.
    [38] G. Sadaka, Solution of 2D Boussinesq systems with FreeFem++: The flat bottom case, J. Numer. Math., 20 (2012), 303-324.  doi: 10.1515/jnum-2012-0016.
    [39] H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71 (2006), 383-390.  doi: 10.1093/imamat/hxh101.
    [40] Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. Pure Appl. Anal., 4 (2005), 683-693.  doi: 10.3934/cpaa.2005.4.683.
  • 加载中

Figures(8)

Tables(12)

SHARE

Article Metrics

HTML views(1861) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return