September  2019, 24(9): 4783-4797. doi: 10.3934/dcdsb.2019030

Global dynamics of a virus infection model with repulsive effect

Department of Mathematics, School of Science, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China

Received  October 2017 Revised  April 2018 Published  February 2019

Fund Project: This work was supported by the National Natural Science Foundation of China (No. 11671359, No. 11271342), the provincial Natural Science Foundation of Zhejiang (No. LY19A010027, No. LY18A010013) and the Science Foundation of Zhejiang Sci-Tech University under Grant No. 15062173-Y.

This paper is devoted to investigate a virus infection model with a spatially heterogeneous structure and nonlinear diffusion. First we establish the properties of the basic reproduction number $ R_0 $ for infected cells and free virus particles. Then we prove that the comparison principle can be applied to an auxiliary system with quasilinear diffusion under appropriate conditions. Then the sufficient conditions for the globally asymptotical stability of infection-free steady state are obtained, which indicates that $ R_0<1 $ is necessary for infected cells and free virus particles to be extinct. Next we prove the existence of positive non-constant steady states and the persistence of infected cells and free virion where $ R_0>1 $ is required. Finally, it is shown that, for the spatially homogeneous case when the infected cells rate of change of the repulsive effect is small enough, $ R_0 $ is the only determinant of the global dynamics of the underlying virus infection system. The obtained results give an insight into the optimal control of the virion.

Citation: Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030
References:
[1]

H. Amann, Synamical theory of quasilinear parabolic equations Ⅲ: Global existence, Math. Z, 202 (1989), 219-250.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser HJ, Triebel H (eds) Function spaces, differential operators and nonlinear analysis (Friedrichroda), Teubner-Texte zur Mathematik. Teubner, Stuttgart, 133 (1992), 9-126.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

M. DoceulV. HollinsheadL van der Linden and G. L. Smith, Repulsion of superinfecting virions: A mechanism for rapid virus spread, Science, 327 (2010), 873-876.  doi: 10.1126/science.1183173.  Google Scholar

[4]

Q. GanR. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay, J. Appl. Math., 75 (2010), 392-417.  doi: 10.1093/imamat/hxq009.  Google Scholar

[5]

S. B. HsuF. B. Wang and X. Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Differential Equations, 255 (2013), 265-297.  doi: 10.1016/j.jde.2013.04.006.  Google Scholar

[6]

X. L. Lai and X. F. Zou, Repulsion effect on superinfecting virions by infected cells, Bulletin of Mathematical Biology, 76 (2014), 2806-2833.  doi: 10.1007/s11538-014-0033-9.  Google Scholar

[7]

Y. J. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, Journal of Mathematical Biology, 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[8]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[9]

M. A. NowakS. BonhoefferA. M. Hill and et al., Viral dynamics in hepatitis B virus infection, Proceedings of the National Academy of Sciences of the United States of America, 93 (1996), 4398-4402.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[10]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Spring-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[11]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, AMS, Providence, RI, 1995.  Google Scholar

[12]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[13]

H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosciences, 166 (2000), 173-201.  doi: 10.1016/S0025-5564(00)00018-3.  Google Scholar

[14]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Mathematical Biosciences, 210 (2007), 78-95.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

[15]

W. D. Wang and X. Q. Zhao, Spatial invasion threshold of lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.  doi: 10.1137/140981769.  Google Scholar

[16]

W. D. Wang and X. Q. Zhao, Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models, SIAM J. Appl. Dynamical Systems, 11 (2012), 1562-1763.  doi: 10.1137/120872942.  Google Scholar

[17]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009), 499-509.  doi: 10.1016/j.jtbi.2009.01.001.  Google Scholar

[18]

X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, Second Edition, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

show all references

References:
[1]

H. Amann, Synamical theory of quasilinear parabolic equations Ⅲ: Global existence, Math. Z, 202 (1989), 219-250.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Schmeisser HJ, Triebel H (eds) Function spaces, differential operators and nonlinear analysis (Friedrichroda), Teubner-Texte zur Mathematik. Teubner, Stuttgart, 133 (1992), 9-126.  doi: 10.1007/978-3-663-11336-2_1.  Google Scholar

[3]

M. DoceulV. HollinsheadL van der Linden and G. L. Smith, Repulsion of superinfecting virions: A mechanism for rapid virus spread, Science, 327 (2010), 873-876.  doi: 10.1126/science.1183173.  Google Scholar

[4]

Q. GanR. Xu and P. Yang, Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay, J. Appl. Math., 75 (2010), 392-417.  doi: 10.1093/imamat/hxq009.  Google Scholar

[5]

S. B. HsuF. B. Wang and X. Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats, J. Differential Equations, 255 (2013), 265-297.  doi: 10.1016/j.jde.2013.04.006.  Google Scholar

[6]

X. L. Lai and X. F. Zou, Repulsion effect on superinfecting virions by infected cells, Bulletin of Mathematical Biology, 76 (2014), 2806-2833.  doi: 10.1007/s11538-014-0033-9.  Google Scholar

[7]

Y. J. Lou and X. Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, Journal of Mathematical Biology, 62 (2011), 543-568.  doi: 10.1007/s00285-010-0346-8.  Google Scholar

[8]

P. Magal and X. Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.  doi: 10.1137/S0036141003439173.  Google Scholar

[9]

M. A. NowakS. BonhoefferA. M. Hill and et al., Viral dynamics in hepatitis B virus infection, Proceedings of the National Academy of Sciences of the United States of America, 93 (1996), 4398-4402.  doi: 10.1073/pnas.93.9.4398.  Google Scholar

[10]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Spring-Verlag, 1984. doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[11]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr. 41, AMS, Providence, RI, 1995.  Google Scholar

[12]

H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Analysis, 47 (2001), 6169-6179.  doi: 10.1016/S0362-546X(01)00678-2.  Google Scholar

[13]

H. R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosciences, 166 (2000), 173-201.  doi: 10.1016/S0025-5564(00)00018-3.  Google Scholar

[14]

K. Wang and W. Wang, Propagation of HBV with spatial dependence, Mathematical Biosciences, 210 (2007), 78-95.  doi: 10.1016/j.mbs.2007.05.004.  Google Scholar

[15]

W. D. Wang and X. Q. Zhao, Spatial invasion threshold of lyme disease, SIAM J. Appl. Math., 75 (2015), 1142-1170.  doi: 10.1137/140981769.  Google Scholar

[16]

W. D. Wang and X. Q. Zhao, Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models, SIAM J. Appl. Dynamical Systems, 11 (2012), 1562-1763.  doi: 10.1137/120872942.  Google Scholar

[17]

R. Xu and Z. Ma, An HBV model with diffusion and time delay, J. Theor. Biol., 257 (2009), 499-509.  doi: 10.1016/j.jtbi.2009.01.001.  Google Scholar

[18]

X. Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, Second Edition, 2017. doi: 10.1007/978-3-319-56433-3.  Google Scholar

[1]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[2]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[8]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[11]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[19]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (229)
  • HTML views (444)
  • Cited by (0)

Other articles
by authors

[Back to Top]