September  2019, 24(9): 4799-4813. doi: 10.3934/dcdsb.2019031

An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries

1. 

Computational mathematics research center/School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, China

2. 

School of Mathematics and Statistics, Guizhou University, Guiyang, 550025, China

* Corresponding author: Jun Zhang

Received  January 2018 Revised  August 2018 Published  February 2019

Fund Project: The first author is supported by Guizhou University of Finance and Economics(No. 2017XZD01).

In this work, we develop an efficient spectral method to solve the Helmholtz transmission eigenvalue problem in polar geometries. An essential difficulty is that the polar coordinate transformation introduces the polar singularities. In order to overcome this difficulty, we introduce some pole conditions and the corresponding weighted Sobolev space. The polar coordinate transformation and variable separation techniques are presented to transform the original problem into a series of equivalent one-dimensional eigenvalue problem, and error estimate for the approximate eigenvalues and corresponding eigenfunctions are obtained. Finally, numerical simulations are performed to confirm the validity of the numerical method.

Citation: Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031
References:
[1]

J. An and J. Shen, A Spectral-Element method for transmission eigenvalue problems, Journal of Scientific Computing, 57 (2013), 670-688.  doi: 10.1007/s10915-013-9720-1.  Google Scholar

[2]

J. An and J. Shen, Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem, Computers and Mathematics with Applications, 69 (2015), 1132-1143.  doi: 10.1016/j.camwa.2015.03.002.  Google Scholar

[3]

J. An, A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues, Applied Numerical Mathematics, 108 (2016), 171-184.  doi: 10.1016/j.apnum.2015.11.007.  Google Scholar

[4]

J. An and J. Shen, Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction, J. Math. Study, 47 (2014), 1-20.   Google Scholar

[5]

J. An, H. Li and Z. Zhang, Spectral-galerkin approximation and optimal error estimate for stokes eigenvalue problems in polar geometries, arXiv: 1610.08647. Google Scholar

[6]

I. Babu$\breve{s}$ka and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641-787.   Google Scholar

[7]

F. Cakoni, M. Cayoren and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp. doi: 10.1088/0266-5611/24/6/065016.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis, 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[10]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[11]

F. Cakoni, D. Colton, P. Monk and J. G. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp. doi: 10.1088/0266-5611/26/7/074004.  Google Scholar

[12]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[13]

F. CakoniD. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[14]

F. CakoniP. Monk and J. Sun, Error analysis for the finite element approximation of transmission eigenvalues, Computational Methods in Applied Mathematics, 14 (2014), 419-427.  doi: 10.1515/cmam-2014-0021.  Google Scholar

[15]

D. ColtonL. Paivarinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[16]

D. Colton, P. Monk and J. G. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011, 16pp. doi: 10.1088/0266-5611/26/4/045011.  Google Scholar

[17]

X. JiY. Xi and H. Xie, Nonconforming finite element method for the transmission eigenvalue problem, Advances in Applied Mathematics and Mechanics, 9 (2017), 92-103.  doi: 10.4208/aamm.2015.m1295.  Google Scholar

[18]

X. Ji, J. G. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz Transmission eigenvalues, ACM Transactions on Mathematical Software (TOMS), 38 (2012), Art. 29, 8 pp. doi: 10.1145/2331130.2331137.  Google Scholar

[19]

X. JiJ. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, Journal of Scientific Computing, 60 (2014), 276-294.  doi: 10.1007/s10915-013-9794-9.  Google Scholar

[20]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.  doi: 10.3934/ipi.2009.3.155.  Google Scholar

[21]

L. Paivarinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis, 40 (2008), 738-753.  doi: 10.1137/070697525.  Google Scholar

[22]

B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM Journal on Mathematical Analysis, 22 (1991), 1755-1762.  doi: 10.1137/0522109.  Google Scholar

[23]

J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604.  doi: 10.1137/S1064827595295301.  Google Scholar

[24]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006.  Google Scholar

[25]

J. Sun, Iterative methods for transmission eigenvalues, SIAM Journal on Numerical Analysis, 49 (2011), 1860-1874.  doi: 10.1137/100785478.  Google Scholar

[26]

Y. Yang, H. Bi, H. Li, et al, Mixed methods for the helmholtz transmission eigenvalues, SIAM Journal on Scientific Computing, 38 (2016), A1383–A1403. doi: 10.1137/15M1050756.  Google Scholar

show all references

References:
[1]

J. An and J. Shen, A Spectral-Element method for transmission eigenvalue problems, Journal of Scientific Computing, 57 (2013), 670-688.  doi: 10.1007/s10915-013-9720-1.  Google Scholar

[2]

J. An and J. Shen, Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem, Computers and Mathematics with Applications, 69 (2015), 1132-1143.  doi: 10.1016/j.camwa.2015.03.002.  Google Scholar

[3]

J. An, A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues, Applied Numerical Mathematics, 108 (2016), 171-184.  doi: 10.1016/j.apnum.2015.11.007.  Google Scholar

[4]

J. An and J. Shen, Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction, J. Math. Study, 47 (2014), 1-20.   Google Scholar

[5]

J. An, H. Li and Z. Zhang, Spectral-galerkin approximation and optimal error estimate for stokes eigenvalue problems in polar geometries, arXiv: 1610.08647. Google Scholar

[6]

I. Babu$\breve{s}$ka and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641-787.   Google Scholar

[7]

F. Cakoni, M. Cayoren and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp. doi: 10.1088/0266-5611/24/6/065016.  Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis, 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[9]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[10]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[11]

F. Cakoni, D. Colton, P. Monk and J. G. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp. doi: 10.1088/0266-5611/26/7/074004.  Google Scholar

[12]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493.  doi: 10.1080/00036810802713966.  Google Scholar

[13]

F. CakoniD. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[14]

F. CakoniP. Monk and J. Sun, Error analysis for the finite element approximation of transmission eigenvalues, Computational Methods in Applied Mathematics, 14 (2014), 419-427.  doi: 10.1515/cmam-2014-0021.  Google Scholar

[15]

D. ColtonL. Paivarinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.  doi: 10.3934/ipi.2007.1.13.  Google Scholar

[16]

D. Colton, P. Monk and J. G. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011, 16pp. doi: 10.1088/0266-5611/26/4/045011.  Google Scholar

[17]

X. JiY. Xi and H. Xie, Nonconforming finite element method for the transmission eigenvalue problem, Advances in Applied Mathematics and Mechanics, 9 (2017), 92-103.  doi: 10.4208/aamm.2015.m1295.  Google Scholar

[18]

X. Ji, J. G. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz Transmission eigenvalues, ACM Transactions on Mathematical Software (TOMS), 38 (2012), Art. 29, 8 pp. doi: 10.1145/2331130.2331137.  Google Scholar

[19]

X. JiJ. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, Journal of Scientific Computing, 60 (2014), 276-294.  doi: 10.1007/s10915-013-9794-9.  Google Scholar

[20]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.  doi: 10.3934/ipi.2009.3.155.  Google Scholar

[21]

L. Paivarinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis, 40 (2008), 738-753.  doi: 10.1137/070697525.  Google Scholar

[22]

B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM Journal on Mathematical Analysis, 22 (1991), 1755-1762.  doi: 10.1137/0522109.  Google Scholar

[23]

J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604.  doi: 10.1137/S1064827595295301.  Google Scholar

[24]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006.  Google Scholar

[25]

J. Sun, Iterative methods for transmission eigenvalues, SIAM Journal on Numerical Analysis, 49 (2011), 1860-1874.  doi: 10.1137/100785478.  Google Scholar

[26]

Y. Yang, H. Bi, H. Li, et al, Mixed methods for the helmholtz transmission eigenvalues, SIAM Journal on Scientific Computing, 38 (2016), A1383–A1403. doi: 10.1137/15M1050756.  Google Scholar

Figure 1.  Numerical errors of example 1 for $ m = 0 $.
Figure 2.  Numerical errors of example 1 for $ m = 2 $.
Figure 3.  Numerical errors of example 2 for $ m = 1 $.
Figure 4.  Numerical errors of example 2 for m = 0.
Figure 5.  Numerical errors of example 2 for m = 1.
Figure 6.  Numerical errors of example 3 for m = 0.
Table 1.  The first four eigenvalues for m = 0
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 1.9879951237731613.7409250902496916.5822782981638128.386644958117056
$N = 15$ 1.9879951237713753.7409249351004446.5810305728250588.273172861972871
$N = 20$ 1.9879951237713763.7409249351004466.5810305497202578.273170634133454
$N = 25$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N = 30$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 1.9879951237731613.7409250902496916.5822782981638128.386644958117056
$N = 15$ 1.9879951237713753.7409249351004446.5810305728250588.273172861972871
$N = 20$ 1.9879951237713763.7409249351004466.5810305497202578.273170634133454
$N = 25$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N = 30$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
Table 2.  The first four eigenvalues for $m = 1$
$N \setminus k_{0N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{0N}^3$ $k_{1N}^4$
$N = 10$ 2.6129299642085494.2958107711784455.9897750231532219.091957821822609
$N = 15$ 2.6129299639027934.2958099366585835.9885009103153738.841298655023424
$N = 20$ 2.6129299639027894.2958099366584515.9885009101069528.841280530061555
$N = 25$ 2.6129299639027924.2958099366584595.9885009101069548.841280529974766
$N = 30$ 2.6129299639027944.2958099366584485.9885009101069548.841280529974791
$N \setminus k_{0N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{0N}^3$ $k_{1N}^4$
$N = 10$ 2.6129299642085494.2958107711784455.9897750231532219.091957821822609
$N = 15$ 2.6129299639027934.2958099366585835.9885009103153738.841298655023424
$N = 20$ 2.6129299639027894.2958099366584515.9885009101069528.841280530061555
$N = 25$ 2.6129299639027924.2958099366584595.9885009101069548.841280529974766
$N = 30$ 2.6129299639027944.2958099366584485.9885009101069548.841280529974791
Table 3.  The first four eigenvalues for $m = 2$
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 3.2266479487189864.9418893327206796.6051581796652958.397840671676448
$N = 15$ 3.2266479478902504.9418345576933486.6038344917423358.279736371734421
$N = 20$ 3.2266479478902504.9418345576926686.6038344679396338.279734012410303
$N = 25$ 3.2266479478902514.9418345576926666.6038344679396398.279734012401546
$N = 30$ 3.2266479478902514.9418345576926636.6038344679396368.279734012401549
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 3.2266479487189864.9418893327206796.6051581796652958.397840671676448
$N = 15$ 3.2266479478902504.9418345576933486.6038344917423358.279736371734421
$N = 20$ 3.2266479478902504.9418345576926686.6038344679396338.279734012410303
$N = 25$ 3.2266479478902514.9418345576926666.6038344679396398.279734012401546
$N = 30$ 3.2266479478902514.9418345576926636.6038344679396368.279734012401549
Table 4.  The first four eigenvalues for $m = 0$
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 2.7594351391661496.6676595732850059.04916438713020313.35822517979881
$N = 15$ 2.7594351391589746.6675470345741039.04704049505956212.95759442163584
$N = 20$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 25$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 30$ 2.7594351391589816.6675470345536989.04704040735104812.95695038075038
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 2.7594351391661496.6676595732850059.04916438713020313.35822517979881
$N = 15$ 2.7594351391589746.6675470345741039.04704049505956212.95759442163584
$N = 20$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 25$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 30$ 2.7594351391589816.6675470345536989.04704040735104812.95695038075038
Table 5.  The first four eigenvalues for $m = 1$
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.5272761555210525.8952946424691029.83750280906308912.78302633393358
$N = 15$ 3.5272761554993295.8952856699749789.81049195339294812.18568470580060
$N = 20$ 3.5272761554993295.8952856699749599.81049186060655712.18556255236016
$N = 25$ 3.5272761554993275.8952856699749579.81049186060632612.18556255231528
$N = 30$ 3.5272761554993315.8952856699749589.81049186060631912.18556255231531
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.5272761555210525.8952946424691029.83750280906308912.78302633393358
$N = 15$ 3.5272761554993295.8952856699749789.81049195339294812.18568470580060
$N = 20$ 3.5272761554993295.8952856699749599.81049186060655712.18556255236016
$N = 25$ 3.5272761554993275.8952856699749579.81049186060632612.18556255231528
$N = 30$ 3.5272761554993315.8952856699749589.81049186060631912.18556255231531
Table 6.  The first four eigenvalues for $m = 2$
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 4.3079726597709616.6485931699587279.08685403542764513.34452507236263
$N = 15$ 4.3079726359714196.6484866952933519.08368918127876612.94522396389963
$N = 20$ 4.3079726359714156.6484866952765069.08368905330218212.94460023197706
$N = 25$ 4.3079726359714176.6484866952765089.08368905330217112.94460022855666
$N = 30$ 4.3079726359714186.6484866952765089.08368905330217512.94460022855666
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 4.3079726597709616.6485931699587279.08685403542764513.34452507236263
$N = 15$ 4.3079726359714196.6484866952933519.08368918127876612.94522396389963
$N = 20$ 4.3079726359714156.6484866952765069.08368905330218212.94460023197706
$N = 25$ 4.3079726359714176.6484866952765089.08368905330217112.94460022855666
$N = 30$ 4.3079726359714186.6484866952765089.08368905330217512.94460022855666
Table 7.  The first four eigenvalues for $m = 0$
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.4335642722321994.6006854510154958.1135119669037339.405045505293291
$N = 15$ 3.4335642067521734.6006418869644747.9663111665781049.146084137724058
$N = 20$ 3.4335642067521724.6006418869634697.9663093604662839.145821838198342
$N = 25$ 3.4335642067521724.6006418869634747.9663093604586889.145821837979225
$N = 30$ 3.4335642067521754.6006418869634727.9663093604586919.145821837979231
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.4335642722321994.6006854510154958.1135119669037339.405045505293291
$N = 15$ 3.4335642067521734.6006418869644747.9663111665781049.146084137724058
$N = 20$ 3.4335642067521724.6006418869634697.9663093604662839.145821838198342
$N = 25$ 3.4335642067521724.6006418869634747.9663093604586889.145821837979225
$N = 30$ 3.4335642067521754.6006418869634727.9663093604586919.145821837979231
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[8]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[9]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (75)
  • HTML views (425)
  • Cited by (0)

Other articles
by authors

[Back to Top]