September  2019, 24(9): 4799-4813. doi: 10.3934/dcdsb.2019031

An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries

1. 

Computational mathematics research center/School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, China

2. 

School of Mathematics and Statistics, Guizhou University, Guiyang, 550025, China

* Corresponding author: Jun Zhang

Received  January 2018 Revised  August 2018 Published  February 2019

Fund Project: The first author is supported by Guizhou University of Finance and Economics(No. 2017XZD01)

In this work, we develop an efficient spectral method to solve the Helmholtz transmission eigenvalue problem in polar geometries. An essential difficulty is that the polar coordinate transformation introduces the polar singularities. In order to overcome this difficulty, we introduce some pole conditions and the corresponding weighted Sobolev space. The polar coordinate transformation and variable separation techniques are presented to transform the original problem into a series of equivalent one-dimensional eigenvalue problem, and error estimate for the approximate eigenvalues and corresponding eigenfunctions are obtained. Finally, numerical simulations are performed to confirm the validity of the numerical method.

Citation: Jun Zhang, Xinyue Fan. An efficient spectral method for the Helmholtz transmission eigenvalues in polar geometries. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4799-4813. doi: 10.3934/dcdsb.2019031
References:
[1]

J. An and J. Shen, A Spectral-Element method for transmission eigenvalue problems, Journal of Scientific Computing, 57 (2013), 670-688. doi: 10.1007/s10915-013-9720-1. Google Scholar

[2]

J. An and J. Shen, Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem, Computers and Mathematics with Applications, 69 (2015), 1132-1143. doi: 10.1016/j.camwa.2015.03.002. Google Scholar

[3]

J. An, A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues, Applied Numerical Mathematics, 108 (2016), 171-184. doi: 10.1016/j.apnum.2015.11.007. Google Scholar

[4]

J. An and J. Shen, Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction, J. Math. Study, 47 (2014), 1-20. Google Scholar

[5]

J. An, H. Li and Z. Zhang, Spectral-galerkin approximation and optimal error estimate for stokes eigenvalue problems in polar geometries, arXiv: 1610.08647.Google Scholar

[6]

I. Babu$\breve{s}$ka and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641-787. Google Scholar

[7]

F. Cakoni, M. Cayoren and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp. doi: 10.1088/0266-5611/24/6/065016. Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis, 42 (2010), 237-255. doi: 10.1137/090769338. Google Scholar

[9]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003. Google Scholar

[10]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522. doi: 10.1088/0266-5611/23/2/004. Google Scholar

[11]

F. Cakoni, D. Colton, P. Monk and J. G. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp. doi: 10.1088/0266-5611/26/7/074004. Google Scholar

[12]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493. doi: 10.1080/00036810802713966. Google Scholar

[13]

F. CakoniD. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003. Google Scholar

[14]

F. CakoniP. Monk and J. Sun, Error analysis for the finite element approximation of transmission eigenvalues, Computational Methods in Applied Mathematics, 14 (2014), 419-427. doi: 10.1515/cmam-2014-0021. Google Scholar

[15]

D. ColtonL. Paivarinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13. Google Scholar

[16]

D. Colton, P. Monk and J. G. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011, 16pp. doi: 10.1088/0266-5611/26/4/045011. Google Scholar

[17]

X. JiY. Xi and H. Xie, Nonconforming finite element method for the transmission eigenvalue problem, Advances in Applied Mathematics and Mechanics, 9 (2017), 92-103. doi: 10.4208/aamm.2015.m1295. Google Scholar

[18]

X. Ji, J. G. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz Transmission eigenvalues, ACM Transactions on Mathematical Software (TOMS), 38 (2012), Art. 29, 8 pp. doi: 10.1145/2331130.2331137. Google Scholar

[19]

X. JiJ. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, Journal of Scientific Computing, 60 (2014), 276-294. doi: 10.1007/s10915-013-9794-9. Google Scholar

[20]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172. doi: 10.3934/ipi.2009.3.155. Google Scholar

[21]

L. Paivarinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis, 40 (2008), 738-753. doi: 10.1137/070697525. Google Scholar

[22]

B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM Journal on Mathematical Analysis, 22 (1991), 1755-1762. doi: 10.1137/0522109. Google Scholar

[23]

J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604. doi: 10.1137/S1064827595295301. Google Scholar

[24]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006. Google Scholar

[25]

J. Sun, Iterative methods for transmission eigenvalues, SIAM Journal on Numerical Analysis, 49 (2011), 1860-1874. doi: 10.1137/100785478. Google Scholar

[26]

Y. Yang, H. Bi, H. Li, et al, Mixed methods for the helmholtz transmission eigenvalues, SIAM Journal on Scientific Computing, 38 (2016), A1383–A1403. doi: 10.1137/15M1050756. Google Scholar

show all references

References:
[1]

J. An and J. Shen, A Spectral-Element method for transmission eigenvalue problems, Journal of Scientific Computing, 57 (2013), 670-688. doi: 10.1007/s10915-013-9720-1. Google Scholar

[2]

J. An and J. Shen, Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem, Computers and Mathematics with Applications, 69 (2015), 1132-1143. doi: 10.1016/j.camwa.2015.03.002. Google Scholar

[3]

J. An, A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues, Applied Numerical Mathematics, 108 (2016), 171-184. doi: 10.1016/j.apnum.2015.11.007. Google Scholar

[4]

J. An and J. Shen, Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction, J. Math. Study, 47 (2014), 1-20. Google Scholar

[5]

J. An, H. Li and Z. Zhang, Spectral-galerkin approximation and optimal error estimate for stokes eigenvalue problems in polar geometries, arXiv: 1610.08647.Google Scholar

[6]

I. Babu$\breve{s}$ka and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641-787. Google Scholar

[7]

F. Cakoni, M. Cayoren and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp. doi: 10.1088/0266-5611/24/6/065016. Google Scholar

[8]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis, 42 (2010), 237-255. doi: 10.1137/090769338. Google Scholar

[9]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003. Google Scholar

[10]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522. doi: 10.1088/0266-5611/23/2/004. Google Scholar

[11]

F. Cakoni, D. Colton, P. Monk and J. G. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp. doi: 10.1088/0266-5611/26/7/074004. Google Scholar

[12]

F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493. doi: 10.1080/00036810802713966. Google Scholar

[13]

F. CakoniD. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003. Google Scholar

[14]

F. CakoniP. Monk and J. Sun, Error analysis for the finite element approximation of transmission eigenvalues, Computational Methods in Applied Mathematics, 14 (2014), 419-427. doi: 10.1515/cmam-2014-0021. Google Scholar

[15]

D. ColtonL. Paivarinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28. doi: 10.3934/ipi.2007.1.13. Google Scholar

[16]

D. Colton, P. Monk and J. G. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011, 16pp. doi: 10.1088/0266-5611/26/4/045011. Google Scholar

[17]

X. JiY. Xi and H. Xie, Nonconforming finite element method for the transmission eigenvalue problem, Advances in Applied Mathematics and Mechanics, 9 (2017), 92-103. doi: 10.4208/aamm.2015.m1295. Google Scholar

[18]

X. Ji, J. G. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz Transmission eigenvalues, ACM Transactions on Mathematical Software (TOMS), 38 (2012), Art. 29, 8 pp. doi: 10.1145/2331130.2331137. Google Scholar

[19]

X. JiJ. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, Journal of Scientific Computing, 60 (2014), 276-294. doi: 10.1007/s10915-013-9794-9. Google Scholar

[20]

A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172. doi: 10.3934/ipi.2009.3.155. Google Scholar

[21]

L. Paivarinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis, 40 (2008), 738-753. doi: 10.1137/070697525. Google Scholar

[22]

B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM Journal on Mathematical Analysis, 22 (1991), 1755-1762. doi: 10.1137/0522109. Google Scholar

[23]

J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604. doi: 10.1137/S1064827595295301. Google Scholar

[24]

J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006. Google Scholar

[25]

J. Sun, Iterative methods for transmission eigenvalues, SIAM Journal on Numerical Analysis, 49 (2011), 1860-1874. doi: 10.1137/100785478. Google Scholar

[26]

Y. Yang, H. Bi, H. Li, et al, Mixed methods for the helmholtz transmission eigenvalues, SIAM Journal on Scientific Computing, 38 (2016), A1383–A1403. doi: 10.1137/15M1050756. Google Scholar

Figure 1.  Numerical errors of example 1 for $ m = 0 $.
Figure 2.  Numerical errors of example 1 for $ m = 2 $.
Figure 3.  Numerical errors of example 2 for $ m = 1 $.
Figure 4.  Numerical errors of example 2 for m = 0.
Figure 5.  Numerical errors of example 2 for m = 1.
Figure 6.  Numerical errors of example 3 for m = 0.
Table 1.  The first four eigenvalues for m = 0
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 1.9879951237731613.7409250902496916.5822782981638128.386644958117056
$N = 15$ 1.9879951237713753.7409249351004446.5810305728250588.273172861972871
$N = 20$ 1.9879951237713763.7409249351004466.5810305497202578.273170634133454
$N = 25$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N = 30$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 1.9879951237731613.7409250902496916.5822782981638128.386644958117056
$N = 15$ 1.9879951237713753.7409249351004446.5810305728250588.273172861972871
$N = 20$ 1.9879951237713763.7409249351004466.5810305497202578.273170634133454
$N = 25$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
$N = 30$ 1.9879951237713783.7409249351004436.5810305497202558.273170634125105
Table 2.  The first four eigenvalues for $m = 1$
$N \setminus k_{0N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{0N}^3$ $k_{1N}^4$
$N = 10$ 2.6129299642085494.2958107711784455.9897750231532219.091957821822609
$N = 15$ 2.6129299639027934.2958099366585835.9885009103153738.841298655023424
$N = 20$ 2.6129299639027894.2958099366584515.9885009101069528.841280530061555
$N = 25$ 2.6129299639027924.2958099366584595.9885009101069548.841280529974766
$N = 30$ 2.6129299639027944.2958099366584485.9885009101069548.841280529974791
$N \setminus k_{0N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{0N}^3$ $k_{1N}^4$
$N = 10$ 2.6129299642085494.2958107711784455.9897750231532219.091957821822609
$N = 15$ 2.6129299639027934.2958099366585835.9885009103153738.841298655023424
$N = 20$ 2.6129299639027894.2958099366584515.9885009101069528.841280530061555
$N = 25$ 2.6129299639027924.2958099366584595.9885009101069548.841280529974766
$N = 30$ 2.6129299639027944.2958099366584485.9885009101069548.841280529974791
Table 3.  The first four eigenvalues for $m = 2$
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 3.2266479487189864.9418893327206796.6051581796652958.397840671676448
$N = 15$ 3.2266479478902504.9418345576933486.6038344917423358.279736371734421
$N = 20$ 3.2266479478902504.9418345576926686.6038344679396338.279734012410303
$N = 25$ 3.2266479478902514.9418345576926666.6038344679396398.279734012401546
$N = 30$ 3.2266479478902514.9418345576926636.6038344679396368.279734012401549
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 3.2266479487189864.9418893327206796.6051581796652958.397840671676448
$N = 15$ 3.2266479478902504.9418345576933486.6038344917423358.279736371734421
$N = 20$ 3.2266479478902504.9418345576926686.6038344679396338.279734012410303
$N = 25$ 3.2266479478902514.9418345576926666.6038344679396398.279734012401546
$N = 30$ 3.2266479478902514.9418345576926636.6038344679396368.279734012401549
Table 4.  The first four eigenvalues for $m = 0$
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 2.7594351391661496.6676595732850059.04916438713020313.35822517979881
$N = 15$ 2.7594351391589746.6675470345741039.04704049505956212.95759442163584
$N = 20$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 25$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 30$ 2.7594351391589816.6675470345536989.04704040735104812.95695038075038
$N \setminus k_{0N}^i $ $k_{0N}^1$ $k_{0N}^2$ $k_{0N}^3$ $k_{0N}^4$
$N = 10$ 2.7594351391661496.6676595732850059.04916438713020313.35822517979881
$N = 15$ 2.7594351391589746.6675470345741039.04704049505956212.95759442163584
$N = 20$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 25$ 2.7594351391589786.6675470345536979.04704040735104412.95695038075036
$N = 30$ 2.7594351391589816.6675470345536989.04704040735104812.95695038075038
Table 5.  The first four eigenvalues for $m = 1$
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.5272761555210525.8952946424691029.83750280906308912.78302633393358
$N = 15$ 3.5272761554993295.8952856699749789.81049195339294812.18568470580060
$N = 20$ 3.5272761554993295.8952856699749599.81049186060655712.18556255236016
$N = 25$ 3.5272761554993275.8952856699749579.81049186060632612.18556255231528
$N = 30$ 3.5272761554993315.8952856699749589.81049186060631912.18556255231531
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.5272761555210525.8952946424691029.83750280906308912.78302633393358
$N = 15$ 3.5272761554993295.8952856699749789.81049195339294812.18568470580060
$N = 20$ 3.5272761554993295.8952856699749599.81049186060655712.18556255236016
$N = 25$ 3.5272761554993275.8952856699749579.81049186060632612.18556255231528
$N = 30$ 3.5272761554993315.8952856699749589.81049186060631912.18556255231531
Table 6.  The first four eigenvalues for $m = 2$
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 4.3079726597709616.6485931699587279.08685403542764513.34452507236263
$N = 15$ 4.3079726359714196.6484866952933519.08368918127876612.94522396389963
$N = 20$ 4.3079726359714156.6484866952765069.08368905330218212.94460023197706
$N = 25$ 4.3079726359714176.6484866952765089.08368905330217112.94460022855666
$N = 30$ 4.3079726359714186.6484866952765089.08368905330217512.94460022855666
$N \setminus k_{2N}^i $ $k_{2N}^1$ $k_{2N}^2$ $k_{2N}^3$ $k_{2N}^4$
$N = 10$ 4.3079726597709616.6485931699587279.08685403542764513.34452507236263
$N = 15$ 4.3079726359714196.6484866952933519.08368918127876612.94522396389963
$N = 20$ 4.3079726359714156.6484866952765069.08368905330218212.94460023197706
$N = 25$ 4.3079726359714176.6484866952765089.08368905330217112.94460022855666
$N = 30$ 4.3079726359714186.6484866952765089.08368905330217512.94460022855666
Table 7.  The first four eigenvalues for $m = 0$
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.4335642722321994.6006854510154958.1135119669037339.405045505293291
$N = 15$ 3.4335642067521734.6006418869644747.9663111665781049.146084137724058
$N = 20$ 3.4335642067521724.6006418869634697.9663093604662839.145821838198342
$N = 25$ 3.4335642067521724.6006418869634747.9663093604586889.145821837979225
$N = 30$ 3.4335642067521754.6006418869634727.9663093604586919.145821837979231
$N \setminus k_{1N}^i $ $k_{1N}^1$ $k_{1N}^2$ $k_{1N}^3$ $k_{1N}^4$
$N = 10$ 3.4335642722321994.6006854510154958.1135119669037339.405045505293291
$N = 15$ 3.4335642067521734.6006418869644747.9663111665781049.146084137724058
$N = 20$ 3.4335642067521724.6006418869634697.9663093604662839.145821838198342
$N = 25$ 3.4335642067521724.6006418869634747.9663093604586889.145821837979225
$N = 30$ 3.4335642067521754.6006418869634727.9663093604586919.145821837979231
[1]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[2]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[3]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[4]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[5]

Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529

[6]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[7]

Wen-ling Zhao, Dao-jin Song. A global error bound via the SQP method for constrained optimization problem. Journal of Industrial & Management Optimization, 2007, 3 (4) : 775-781. doi: 10.3934/jimo.2007.3.775

[8]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[9]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[10]

Robert S. Strichartz. Average error for spectral asymptotics on surfaces. Communications on Pure & Applied Analysis, 2016, 15 (1) : 9-39. doi: 10.3934/cpaa.2016.15.9

[11]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[12]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[13]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[14]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks & Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[15]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems & Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[16]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[17]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[18]

Hengguang Li, Jeffrey S. Ovall. A posteriori eigenvalue error estimation for a Schrödinger operator with inverse square potential. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1377-1391. doi: 10.3934/dcdsb.2015.20.1377

[19]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[20]

Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (32)
  • HTML views (355)
  • Cited by (0)

Other articles
by authors

[Back to Top]