[1]
|
J. An and J. Shen, A Spectral-Element method for transmission eigenvalue problems, Journal of Scientific Computing, 57 (2013), 670-688.
doi: 10.1007/s10915-013-9720-1.
|
[2]
|
J. An and J. Shen, Spectral approximation to a transmission eigenvalue problem and its applications to an inverse problem, Computers and Mathematics with Applications, 69 (2015), 1132-1143.
doi: 10.1016/j.camwa.2015.03.002.
|
[3]
|
J. An, A Legendre-Galerkin spectral approximation and estimation of the index of refraction for transmission eigenvalues, Applied Numerical Mathematics, 108 (2016), 171-184.
doi: 10.1016/j.apnum.2015.11.007.
|
[4]
|
J. An and J. Shen, Efficient spectral methods for transmission eigenvalues and estimation of the index of refraction, J. Math. Study, 47 (2014), 1-20.
|
[5]
|
J. An, H. Li and Z. Zhang, Spectral-galerkin approximation and optimal error estimate for stokes eigenvalue problems in polar geometries, arXiv: 1610.08647.
|
[6]
|
I. Babu$\breve{s}$ka and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, 2 (1991), 641-787.
|
[7]
|
F. Cakoni, M. Cayoren and D. Colton, Transmission eigenvalues and the nondestructive testing of dielectrics, Inverse Problems, 24 (2008), 065016, 15pp.
doi: 10.1088/0266-5611/24/6/065016.
|
[8]
|
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM Journal on Mathematical Analysis, 42 (2010), 237-255.
doi: 10.1137/090769338.
|
[9]
|
F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003.
|
[10]
|
F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.
doi: 10.1088/0266-5611/23/2/004.
|
[11]
|
F. Cakoni, D. Colton, P. Monk and J. G. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inverse Problems, 26 (2010), 074004, 14pp.
doi: 10.1088/0266-5611/26/7/074004.
|
[12]
|
F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Applicable Analysis, 88 (2009), 475-493.
doi: 10.1080/00036810802713966.
|
[13]
|
F. Cakoni, D. Colton and H. Haddar, On the determination of dirichlet or transmission eigenvalues from far field data, Comptes Rendus Mathematique, 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003.
|
[14]
|
F. Cakoni, P. Monk and J. Sun, Error analysis for the finite element approximation of transmission eigenvalues, Computational Methods in Applied Mathematics, 14 (2014), 419-427.
doi: 10.1515/cmam-2014-0021.
|
[15]
|
D. Colton, L. Paivarinta and J. Sylvester, The interior transmission problem, Inverse Problems and Imaging, 1 (2007), 13-28.
doi: 10.3934/ipi.2007.1.13.
|
[16]
|
D. Colton, P. Monk and J. G. Sun, Analytical and computational methods for transmission eigenvalues, Inverse Problems, 26 (2010), 045011, 16pp.
doi: 10.1088/0266-5611/26/4/045011.
|
[17]
|
X. Ji, Y. Xi and H. Xie, Nonconforming finite element method for the transmission eigenvalue problem, Advances in Applied Mathematics and Mechanics, 9 (2017), 92-103.
doi: 10.4208/aamm.2015.m1295.
|
[18]
|
X. Ji, J. G. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz Transmission eigenvalues, ACM Transactions on Mathematical Software (TOMS), 38 (2012), Art. 29, 8 pp.
doi: 10.1145/2331130.2331137.
|
[19]
|
X. Ji, J. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, Journal of Scientific Computing, 60 (2014), 276-294.
doi: 10.1007/s10915-013-9794-9.
|
[20]
|
A. Kirsch, On the existence of transmission eigenvalues, Inverse Problems and Imaging, 3 (2009), 155-172.
doi: 10.3934/ipi.2009.3.155.
|
[21]
|
L. Paivarinta and J. Sylvester, Transmission eigenvalues, SIAM Journal on Mathematical Analysis, 40 (2008), 738-753.
doi: 10.1137/070697525.
|
[22]
|
B. P. Rynne and B. D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous media, SIAM Journal on Mathematical Analysis, 22 (1991), 1755-1762.
doi: 10.1137/0522109.
|
[23]
|
J. Shen, Efficient spectral-Galerkin methods Ⅲ: Polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583-1604.
doi: 10.1137/S1064827595295301.
|
[24]
|
J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, 2006.
|
[25]
|
J. Sun, Iterative methods for transmission eigenvalues, SIAM Journal on Numerical Analysis, 49 (2011), 1860-1874.
doi: 10.1137/100785478.
|
[26]
|
Y. Yang, H. Bi, H. Li, et al, Mixed methods for the helmholtz transmission eigenvalues, SIAM Journal on Scientific Computing, 38 (2016), A1383–A1403.
doi: 10.1137/15M1050756.
|