doi: 10.3934/dcdsb.2019034

Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields

1. 

Departamento de Computação e Matemática, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil

2. 

Universidade Federal de Goiás, IME, CEP 74001-970, Caixa Postal 131, Goiânia, Goiás, Brazil

* Corresponding author: Tiago de Carvalho

Received  March 2018 Revised  July 2018 Published  February 2019

Fund Project: The first author is partially supported by the CAPES grant number 1576689 (from the program PNPD) and also is grateful to the FAPESP/Brazil grants numbers 2013/34541-0 and 2017/00883-0, the CNPq-Brazil grant number 443302/2014-6 and the CAPES grant number 88881.030454/2013-01 (from the program CSF-PVE)

The T-singularity (invisible two-fold singularity) is one of the most intriguing objects in the study of 3D piecewise smooth vector fields. The occurrence of just one T-singularity already arouses the curiosity of experts in the area due to the wealth of behaviors that may arise in its neighborhood. In this work we show the birth of an arbitrary number, including infinite, of such singularities. Moreover, we are able to show the existence of an arbitrary number of limit cycles, hyperbolic or not, surrounding each one of these singularities.

Citation: Tiago de Carvalho, Bruno Freitas. Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019034
References:
[1]

T. Carvalho and B. R. Freitas, Birth of isolated nested cylinders and limit cycles in 3D piecewise smooth vector fields with symmetry, preprint, arXiv: 1702.01306(2016).

[2]

T. Carvalho and M. A. Teixeira, Attractivity, degeneracy and codimension of a typical singularity in 3D piecewise smooth vector fields, Preprint, arXiv: 1508.00456.

[3]

T. Carvalho and D. J. Tonon, Normal forms for codimension one planar piecewise smooth vector fields, International Journal of Bifurcation and Chaos, 24 (2014), 1450090 (11 pages). doi: 10.1142/S0218127414500904.

[4]

A. Colombo and M. R. Jeffrey, The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Syst., 8 (2009), 624-640. doi: 10.1137/08073113X.

[5]

A Colombo and M. R. Jeffrey, Non-deterministic chaos, and the two fold singularity in piecewise smooth flows, SIAM J. Appl. Dyn. Syst., 10 (2011), 423-451. doi: 10.1137/100801846.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems - Theory and Applications, vol. 163 of Applied Mathematical Sciences. Springer-Verlag London, Ltd., London, 2008.

[7]

M. di Bernardo, A. Colombo and E. Fossas, Two-fold singularity in nonsmooth electrical systems, Proc. IEEE International Symposium on Circuits ans Systems, (2011), 2713–2716. doi: 10.1109/ISCAS.2011.5938165.

[8]

M. di BernardoA. ColomboE. Fossas and M. R. Jeffrey, Teixeira singularities in 3D switched feedback control systems, Systems and Control Letters, 59 (2010), 615-622. doi: 10.1016/j.sysconle.2010.07.006.

[9]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.

[10]

M. GuardiaT. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, Journal of Differential Equations, 250 (2011), 1967-2023. doi: 10.1016/j.jde.2010.11.016.

[11]

A. JacquemardM. A. Teixeira and D. J. Tonon, Stability conditions in piecewise smooth dynamical systems at a two-fold singularity, Journal of Dynamical and Control Systems, 19 (2013), 47-67. doi: 10.1007/s10883-013-9164-9.

[12]

A. Jacquemard, M. A. Teixeira and D. J. Tonon, Piecewise smooth reversible dynamical systems at a two-fold singularity, International Journal of Bifurcation and Chaos, 22 (2012), 1250192, 13 pp. doi: 10.1142/S0218127412501921.

[13]

A. C. J. Luo, Discontinuous Dynamical Systems, Springer, 2012. doi: 10.1007/978-3-642-22461-4.

[14]

D. J. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science, Series A, 2010. doi: 10.1142/7612.

[15]

J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 5-46.

[16]

M. A. Teixeira, Stability conditions for discontinuous vector fields, J. Differential Equations, 88 (1990), 15-29. doi: 10.1016/0022-0396(90)90106-Y.

show all references

References:
[1]

T. Carvalho and B. R. Freitas, Birth of isolated nested cylinders and limit cycles in 3D piecewise smooth vector fields with symmetry, preprint, arXiv: 1702.01306(2016).

[2]

T. Carvalho and M. A. Teixeira, Attractivity, degeneracy and codimension of a typical singularity in 3D piecewise smooth vector fields, Preprint, arXiv: 1508.00456.

[3]

T. Carvalho and D. J. Tonon, Normal forms for codimension one planar piecewise smooth vector fields, International Journal of Bifurcation and Chaos, 24 (2014), 1450090 (11 pages). doi: 10.1142/S0218127414500904.

[4]

A. Colombo and M. R. Jeffrey, The two-fold singularity of discontinuous vector fields, SIAM J. Appl. Dyn. Syst., 8 (2009), 624-640. doi: 10.1137/08073113X.

[5]

A Colombo and M. R. Jeffrey, Non-deterministic chaos, and the two fold singularity in piecewise smooth flows, SIAM J. Appl. Dyn. Syst., 10 (2011), 423-451. doi: 10.1137/100801846.

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems - Theory and Applications, vol. 163 of Applied Mathematical Sciences. Springer-Verlag London, Ltd., London, 2008.

[7]

M. di Bernardo, A. Colombo and E. Fossas, Two-fold singularity in nonsmooth electrical systems, Proc. IEEE International Symposium on Circuits ans Systems, (2011), 2713–2716. doi: 10.1109/ISCAS.2011.5938165.

[8]

M. di BernardoA. ColomboE. Fossas and M. R. Jeffrey, Teixeira singularities in 3D switched feedback control systems, Systems and Control Letters, 59 (2010), 615-622. doi: 10.1016/j.sysconle.2010.07.006.

[9]

A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers-Dordrecht, 1988. doi: 10.1007/978-94-015-7793-9.

[10]

M. GuardiaT. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar Filippov systems, Journal of Differential Equations, 250 (2011), 1967-2023. doi: 10.1016/j.jde.2010.11.016.

[11]

A. JacquemardM. A. Teixeira and D. J. Tonon, Stability conditions in piecewise smooth dynamical systems at a two-fold singularity, Journal of Dynamical and Control Systems, 19 (2013), 47-67. doi: 10.1007/s10883-013-9164-9.

[12]

A. Jacquemard, M. A. Teixeira and D. J. Tonon, Piecewise smooth reversible dynamical systems at a two-fold singularity, International Journal of Bifurcation and Chaos, 22 (2012), 1250192, 13 pp. doi: 10.1142/S0218127412501921.

[13]

A. C. J. Luo, Discontinuous Dynamical Systems, Springer, 2012. doi: 10.1007/978-3-642-22461-4.

[14]

D. J. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science, Series A, 2010. doi: 10.1142/7612.

[15]

J. Sotomayor, Generic one-parameter families of vector fields on two-dimensional manifolds, Inst. Hautes Études Sci. Publ. Math., 43 (1974), 5-46.

[16]

M. A. Teixeira, Stability conditions for discontinuous vector fields, J. Differential Equations, 88 (1990), 15-29. doi: 10.1016/0022-0396(90)90106-Y.

Figure 1.  Return map of $ Z = (X,Y) $
Figure 3.  $ \Sigma- $centers at the T-singularities
Figure 2.  Topological cylinders
Figure 4.  Behavior of the orbits outside and inside of the planes
Figure 5.  Behavior at Theorems B and C
[1]

José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020

[2]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[3]

J. C. Artés, Jaume Llibre, J. C. Medrado. Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 259-270. doi: 10.3934/dcds.2007.17.259

[4]

David J. W. Simpson. On resolving singularities of piecewise-smooth discontinuous vector fields via small perturbations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3803-3830. doi: 10.3934/dcds.2014.34.3803

[5]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[6]

Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67

[7]

Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 247-258. doi: 10.3934/dcds.2007.17.247

[8]

Song-Mei Huan, Xiao-Song Yang. On the number of limit cycles in general planar piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2147-2164. doi: 10.3934/dcds.2012.32.2147

[9]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[10]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[11]

Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2019111

[12]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[13]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[14]

Salomón Rebollo-Perdomo, Claudio Vidal. Bifurcation of limit cycles for a family of perturbed Kukles differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4189-4202. doi: 10.3934/dcds.2018182

[15]

Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669

[16]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[17]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[18]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[19]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019119

[20]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (12)
  • HTML views (245)
  • Cited by (0)

Other articles
by authors

[Back to Top]