September  2019, 24(9): 4899-4912. doi: 10.3934/dcdsb.2019036

Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou, 450001, China

* Corresponding author: Zhijian Yang

Received  March 2018 Revised  October 2018 Published  February 2019

Fund Project: This work is supported by National Natural Science Foundation of China (No.11671367).

The paper investigates the upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations with structural damping: $ u_{tt}-M(\|\nabla u\|^2)\Delta u+(-\Delta)^\alpha u_t+f(u) = g(x,t) $, where $ \alpha\in(1/2, 1) $ is said to be a dissipative index. It shows that when the nonlinearity $ f(u) $ is of supercritical growth $ p: 1 \leq p< p_{\alpha}\equiv\frac{N+4\alpha}{(N-4\alpha)^+} $, the related evolution process has a pullback attractor for each $ \alpha\in(1/2, 1) $, and the family of pullback attractors is upper semicontinuous with respect to $ \alpha $. These results extend those in [27] for autonomous Kirchhoff wave models.

Citation: Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Surez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[9]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical System, Springer Science+Business, Media, LLC, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[10]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106.   Google Scholar

[11]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[12]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[13]

X. Fan and S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Comput., 158 (2004), 253-266.  doi: 10.1016/j.amc.2003.08.147.  Google Scholar

[14]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[15]

K. Gabert and B. X. Wang, Non-autonomous attractors for singularly perturbed parabolic equation on $\mathbb{R}^n$, Nonlinear Anal., 73 (2010), 3336-3347.  doi: 10.1016/j.na.2010.07.014.  Google Scholar

[16]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[19]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883. Google Scholar

[20]

P. E. Kloeden, Pullback Attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[21]

M. Nakao and Z. J. Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89-105.   Google Scholar

[22]

K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997), 273-301.  doi: 10.1006/jdeq.1997.3263.  Google Scholar

[23]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151-177.  doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0.  Google Scholar

[24]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[25]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[26]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278.  doi: 10.1016/j.jde.2010.09.024.  Google Scholar

[27]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[29]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[30]

Z. J. Yang and Z. M. Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Appl. Math. Lett., 69 (2017), 22-28.  doi: 10.1016/j.aml.2017.01.006.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential Equations, 264 (2018), 3976-4005.  doi: 10.1016/j.jde.2017.11.035.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Surez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[9]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical System, Springer Science+Business, Media, LLC, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[10]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106.   Google Scholar

[11]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[12]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[13]

X. Fan and S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Comput., 158 (2004), 253-266.  doi: 10.1016/j.amc.2003.08.147.  Google Scholar

[14]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[15]

K. Gabert and B. X. Wang, Non-autonomous attractors for singularly perturbed parabolic equation on $\mathbb{R}^n$, Nonlinear Anal., 73 (2010), 3336-3347.  doi: 10.1016/j.na.2010.07.014.  Google Scholar

[16]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[19]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883. Google Scholar

[20]

P. E. Kloeden, Pullback Attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[21]

M. Nakao and Z. J. Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89-105.   Google Scholar

[22]

K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997), 273-301.  doi: 10.1006/jdeq.1997.3263.  Google Scholar

[23]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151-177.  doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0.  Google Scholar

[24]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[25]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[26]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278.  doi: 10.1016/j.jde.2010.09.024.  Google Scholar

[27]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[29]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[30]

Z. J. Yang and Z. M. Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Appl. Math. Lett., 69 (2017), 22-28.  doi: 10.1016/j.aml.2017.01.006.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential Equations, 264 (2018), 3976-4005.  doi: 10.1016/j.jde.2017.11.035.  Google Scholar

[1]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[2]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[8]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[9]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021006

[10]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[11]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[14]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[17]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 737-754. doi: 10.3934/cpaa.2020287

[18]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[19]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[20]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (163)
  • HTML views (424)
  • Cited by (0)

Other articles
by authors

[Back to Top]