September  2019, 24(9): 4899-4912. doi: 10.3934/dcdsb.2019036

Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations

School of Mathematics and Statistics, Zhengzhou University, No.100, Science Road, Zhengzhou, 450001, China

* Corresponding author: Zhijian Yang

Received  March 2018 Revised  October 2018 Published  February 2019

Fund Project: This work is supported by National Natural Science Foundation of China (No.11671367)

The paper investigates the upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations with structural damping: $ u_{tt}-M(\|\nabla u\|^2)\Delta u+(-\Delta)^\alpha u_t+f(u) = g(x,t) $, where $ \alpha\in(1/2, 1) $ is said to be a dissipative index. It shows that when the nonlinearity $ f(u) $ is of supercritical growth $ p: 1 \leq p< p_{\alpha}\equiv\frac{N+4\alpha}{(N-4\alpha)^+} $, the related evolution process has a pullback attractor for each $ \alpha\in(1/2, 1) $, and the family of pullback attractors is upper semicontinuous with respect to $ \alpha $. These results extend those in [27] for autonomous Kirchhoff wave models.

Citation: Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Surez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[9]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical System, Springer Science+Business, Media, LLC, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[10]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106.   Google Scholar

[11]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[12]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[13]

X. Fan and S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Comput., 158 (2004), 253-266.  doi: 10.1016/j.amc.2003.08.147.  Google Scholar

[14]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[15]

K. Gabert and B. X. Wang, Non-autonomous attractors for singularly perturbed parabolic equation on $\mathbb{R}^n$, Nonlinear Anal., 73 (2010), 3336-3347.  doi: 10.1016/j.na.2010.07.014.  Google Scholar

[16]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[19]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883. Google Scholar

[20]

P. E. Kloeden, Pullback Attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[21]

M. Nakao and Z. J. Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89-105.   Google Scholar

[22]

K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997), 273-301.  doi: 10.1006/jdeq.1997.3263.  Google Scholar

[23]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151-177.  doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0.  Google Scholar

[24]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[25]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[26]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278.  doi: 10.1016/j.jde.2010.09.024.  Google Scholar

[27]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[29]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[30]

Z. J. Yang and Z. M. Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Appl. Math. Lett., 69 (2017), 22-28.  doi: 10.1016/j.aml.2017.01.006.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential Equations, 264 (2018), 3976-4005.  doi: 10.1016/j.jde.2017.11.035.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, North-Holland, Amsterdam, 1992.  Google Scholar

[2]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Cont. Dyn. Sys., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[3]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[4]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[5]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[6]

A. N. CarvalhoJ. A. LangaJ. C. Robinson and A. Surez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.  Google Scholar

[7]

A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.  Google Scholar

[8]

A. N. CarvalhoJ. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlinear Anal., 71 (2009), 1812-1824.  doi: 10.1016/j.na.2009.01.016.  Google Scholar

[9]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical System, Springer Science+Business, Media, LLC, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[10]

I. Chueshov, Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping, J. Abstr. Differ. Equ. Appl., 1 (2010), 86-106.   Google Scholar

[11]

I. Chueshov, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012), 1229-1262.  doi: 10.1016/j.jde.2011.08.022.  Google Scholar

[12]

P. Y. DingZ. J. Yang and Y. N. Li, Global attractor of the Kirchhoff wave models with strong nonlinear damping, Appl. Math. Lett., 76 (2018), 40-45.  doi: 10.1016/j.aml.2017.07.008.  Google Scholar

[13]

X. Fan and S. Zhou, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Comput., 158 (2004), 253-266.  doi: 10.1016/j.amc.2003.08.147.  Google Scholar

[14]

M. M. FreitasP. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.  doi: 10.1016/j.jde.2017.10.007.  Google Scholar

[15]

K. Gabert and B. X. Wang, Non-autonomous attractors for singularly perturbed parabolic equation on $\mathbb{R}^n$, Nonlinear Anal., 73 (2010), 3336-3347.  doi: 10.1016/j.na.2010.07.014.  Google Scholar

[16]

P. G. Geredeli and I. Lasiecka, Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal., 91 (2013), 72-92.  doi: 10.1016/j.na.2013.06.008.  Google Scholar

[17]

J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differential Equations, 73 (1988), 197-214.  doi: 10.1016/0022-0396(88)90104-0.  Google Scholar

[18]

V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Differential Equations, 247 (2009), 1120-1155.  doi: 10.1016/j.jde.2009.04.010.  Google Scholar

[19]

G. Kirchhoff, Vorlesungen über Mechanik, (German) [Lectures on Mechanics], Teubner, Stuttgart, 1883. Google Scholar

[20]

P. E. Kloeden, Pullback Attractors of nonautonomous semidynamical systems, Stoch. Dyn., 3 (2003), 101-112.  doi: 10.1142/S0219493703000632.  Google Scholar

[21]

M. Nakao and Z. J. Yang, Global attractors for some quasi-linear wave equations with a strong dissipation, Adv. Math. Sci. Appl., 17 (2007), 89-105.   Google Scholar

[22]

K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997), 273-301.  doi: 10.1006/jdeq.1997.3263.  Google Scholar

[23]

K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997), 151-177.  doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0.  Google Scholar

[24]

C. Y. SunD. M. Cao and J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.  doi: 10.1088/0951-7715/19/11/008.  Google Scholar

[25]

Y. H. Wang and C. K. Zhong, Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 33 (2013), 3189-3209.  doi: 10.3934/dcds.2013.33.3189.  Google Scholar

[26]

Z. J. Yang and Y. Q. Wang, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010), 3258-3278.  doi: 10.1016/j.jde.2010.09.024.  Google Scholar

[27]

Z. J. YangP. Y. Ding and L. Li, Longtime dynamics of the Kirchhoff equation with fractional damping and supercritical nonlinearity, J. Math. Anal. Appl., 442 (2016), 485-510.  doi: 10.1016/j.jmaa.2016.04.079.  Google Scholar

[28]

Z. J. Yang and P. Y. Ding, Longtime dynamics of Boussinesq type equations with fractional damping, Nonlinear Anal., 161 (2017), 108-130.  doi: 10.1016/j.na.2017.05.015.  Google Scholar

[29]

Z. J. Yang and Y. N. Li, Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous Kirchhoff wave models, Discrete Contin. Dyn. Syst., 38 (2018), 2629-2653.  doi: 10.3934/dcds.2018111.  Google Scholar

[30]

Z. J. Yang and Z. M. Liu, Upper semicontinuity of global attractors for a family of semilinear wave equations with gentle dissipation, Appl. Math. Lett., 69 (2017), 22-28.  doi: 10.1016/j.aml.2017.01.006.  Google Scholar

[31]

Z. J. Yang and Z. M. Liu, Stability of exponential attractors for a family of semilinear wave equations with gentle dissipation, J. Differential Equations, 264 (2018), 3976-4005.  doi: 10.1016/j.jde.2017.11.035.  Google Scholar

[1]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for non-autonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2787-2812. doi: 10.3934/dcds.2017120

[2]

Yonghai Wang, Chengkui Zhong. Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3189-3209. doi: 10.3934/dcds.2013.33.3189

[3]

Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic non-autonomous suspension bridge equation with memory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5959-5979. doi: 10.3934/dcdsb.2019115

[4]

Zhijian Yang, Yanan Li. Criteria on the existence and stability of pullback exponential attractors and their application to non-autonomous kirchhoff wave models. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2629-2653. doi: 10.3934/dcds.2018111

[5]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[6]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[7]

T. Caraballo, J. A. Langa, J. Valero. Structure of the pullback attractor for a non-autonomous scalar differential inclusion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 979-994. doi: 10.3934/dcdss.2016037

[8]

Shengfan Zhou, Caidi Zhao, Yejuan Wang. Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1259-1277. doi: 10.3934/dcds.2008.21.1259

[9]

Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice systems with random coupled coefficients. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2221-2245. doi: 10.3934/cpaa.2016035

[10]

Zhaojuan Wang, Shengfan Zhou. Random attractor for stochastic non-autonomous damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 545-573. doi: 10.3934/dcds.2017022

[11]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[12]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[13]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[14]

Ting Li. Pullback attractors for asymptotically upper semicompact non-autonomous multi-valued semiflows. Communications on Pure & Applied Analysis, 2007, 6 (1) : 279-285. doi: 10.3934/cpaa.2007.6.279

[15]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[16]

Mirelson M. Freitas, Alberto L. C. Costa, Geraldo M. Araújo. Pullback dynamics of a non-autonomous mixture problem in one dimensional solids with nonlinear damping. Communications on Pure & Applied Analysis, 2020, 19 (2) : 785-809. doi: 10.3934/cpaa.2020037

[17]

Fang Li, Bo You. Pullback exponential attractors for the three dimensional non-autonomous Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 55-80. doi: 10.3934/dcdsb.2019172

[18]

Xue-Li Song, Yan-Ren Hou. Pullback $\mathcal{D}$-attractors for the non-autonomous Newton-Boussinesq equation in two-dimensional bounded domain. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 991-1009. doi: 10.3934/dcds.2012.32.991

[19]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[20]

Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019221

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (87)
  • HTML views (353)
  • Cited by (0)

Other articles
by authors

[Back to Top]