Advanced Search
Article Contents
Article Contents

Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment

  • * Corresponding author

    * Corresponding author

The author is supported by NSF grant 11801089, Postdoctoral Science Foundation of China(N0.2018M643281)

Abstract Full Text(HTML) Related Papers Cited by
  • We consider a two-species Lotka-Volterra weak competition model in a one-dimensional advective homogeneous environment, where individuals are exposed to unidirectional flow. It is assumed that two species have the same population dynamics but different diffusion rates, advection rates and intensities of competition. We study the following useful scenarios: (1) if one species disperses by random diffusion only and the other assumes both random and unidirectional movements, two species will coexist; (2) if two species are drifting along the different direction, two species will coexist; (3) if the intensities of inter-specific competition are small enough, two species will coexist; (4) if the intensities of inter-specific competition are close to 1, the competitive exclusion principle holds. These results provide a new mechanism for the coexistence of competing species. Finally, we apply a perturbation argument to illustrate that two species will converge to the unique coexistence steady state.

    Mathematics Subject Classification: Primary: 35K57, 35B32; Secondary: 92D25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] L. Altenberg, Resolvent positive linear operators exhibit the reduction phenomenon, Proc. Natl. Acad. Sci. USA, 109 (2012), 3705-3710.  doi: 10.1073/pnas.1113833109.
    [2] F. Belgacem and C. Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environments, Canad. Appl. Math. Quart., 3 (1995), 379-397. 
    [3] R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.
    [4] X. F. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.  doi: 10.1512/iumj.2008.57.3204.
    [5] X. F. Chen and Y. Lou, Effects of diffusion and advection on the smallest eigenvalue of an elliptic operator and their applications, Indiana Univ. Math. J., 61 (2012), 45-80.  doi: 10.1512/iumj.2012.61.4518.
    [6] M. M. Desai and D. R. Nelson, A quasispecies on a moving oasis, Theoretical Population Biology, 67 (2005), 33-45.  doi: 10.1016/j.tpb.2004.07.005.
    [7] J. DockeryV. HutsonK. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.  doi: 10.1007/s002850050120.
    [8] L. Evans, Partial Differential Equations, 2nd Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [9] D. Gilbarg and  N. TrudingerElliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. 
    [10] P. HessPeriodic-parabolic Boundary Value Problems and Positivity, Longman Scientific and Technical, Harlow, UK, 1991. 
    [11] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.), 3 (1948), 3-95. 
    [12] K. Y. Lam and W. M. Ni, Uniqueness and complete dynamics in heterogeneous competition-diffusion systems, SIAM J. Appl. Math., 72 (2012), 1695-1712.  doi: 10.1137/120869481.
    [13] Y. Lou, Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics, Tutorials in Mathematical Biosciences IV, Lecture Notes in Math., 1922, Springer, Berlin, 2008,171–205. doi: 10.1007/978-3-540-74331-6_5.
    [14] Y. Lou and T. Nagylaki, Evolution of a semilinear parabolic system for migration and selection in population genetics, J. Differential Equations, 204 (2004), 292-322.  doi: 10.1016/j.jde.2004.01.009.
    [15] F. LutscherM. A. Lewis and E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68 (2006), 2129-2160.  doi: 10.1007/s11538-006-9100-1.
    [16] F. LutscherE. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations, SIAM Rev., 47 (2005), 749-772.  doi: 10.1137/050636152.
    [17] Y. LouD. Xiao and P. Zhou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst., 36 (2016), 953-969.  doi: 10.3934/dcds.2016.36.953.
    [18] Y. LouX.-Q. Zhao and P. Zhou, Global dynamics of a Lotka-Volterra competition-diffusion-advection system in heterogeneous environments, J. Math. Pures Appl., 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.
    [19] Y. Lou and P. Zhou, Evolution of dispersal in advective homogeneous environment: The effect of boundary conditions, J. Differential Equations, 259 (2015), 141-171.  doi: 10.1016/j.jde.2015.02.004.
    [20] W. M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9781611971972.
    [21] H. Richard, Evolution of Conditional Dispersal: A Reaction-Diffusion-Advection Approach, Ph.D thesis, The Ohio State University, 2007.
    [22] H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, RI, 1995.
    [23] D. C. Speirs and W. S. C. Gurney, Population persistence in rivers and estuaries, Ecology, 82 (2001), 1219-1237. 
    [24] D. Tang and L. Ma, Dynamical behavior of a general reaction-diffusion-advection model for two competing species, Computers and Mathematics with Applications, 75 (2018), 1128-1142.  doi: 10.1016/j.camwa.2017.10.026.
    [25] O. Vasilyeva and F. Lutscher, Population dynamics in rivers: Analysis of steady states, Can. Appl. Math. Q., 18 (2010), 439-469. 
    [26] X.-Q. ZhaoDynamical Systems in Population Biology, Springer, New York, 2003. 
    [27] X.-Q. Zhao and P. Zhou, On a Lotka-Volterra competition model: the effects of advection and spatial variation, Calc. Var. Partial Differential Equations, 55 (2016), Art. 73, 25 pp. doi: 10.1007/s00526-016-1021-8.
    [28] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. Partial Differential Equations, 55 (2016), Art. 137, 29 pp. doi: 10.1007/s00526-016-1082-8.
    [29] P. Zhou and D. Xiao, Global dynamics of a classical Lotka-Volterra competition-diffusion-advection system, J. of Functional Analysis, 275 (2018), 356-380.  doi: 10.1016/j.jfa.2018.03.006.
    [30] P. Zhou and X.-Q. Zhao, Global dynamics of a two species competition model in open stream environments, J. Dynam. Differential Equations, 30 (2018), 613-636.  doi: 10.1007/s10884-016-9562-2.
    [31] P. Zhou and X.-Q. Zhao, Evolution of passive movement in advective environments: General boundary condition, J. Differential Equations, 264 (2018), 4176-4198.  doi: 10.1016/j.jde.2017.12.005.
  • 加载中

Article Metrics

HTML views(1362) PDF downloads(289) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint