[1]
|
L. Allen, B. Bolker, Y. Lou and A. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete and Continuous Dynamical Systems Series B, 21 (2008), 1-20.
doi: 10.3934/dcds.2008.21.1.
|
[2]
|
S. Berres and R. Ruiz-Baier, A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion, Nonlinear Analysis: Real World Applications, 12 (2011), 2888-2903.
doi: 10.1016/j.nonrwa.2011.04.014.
|
[3]
|
M. Bertsch and M. E. Gurtin, On predator-prey dispersal, repulsive dispersal, and the presence of shock waves, Quarterly of Applied Mathematics, 44 (1986), 339-351.
doi: 10.1090/qam/856189.
|
[4]
|
M. Bertsch, M. E. Gurtin, D. Hilhorst and L. Peletier, On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biology, 23 (1985), 1-13.
doi: 10.1007/BF00276555.
|
[5]
|
M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: The effect of a sedentary colony, Journal of Mathematical Biology, 19 (1984), 1-12.
doi: 10.1007/BF00275928.
|
[6]
|
E. A. Carl, Population control in arctic ground squirrels, Ecology, 52 (1971), 395-413.
doi: 10.2307/1937623.
|
[7]
|
L. Chang and Z. Jin, Efficient numerical methods for spatially extended population and epidemic models with time delay, Applied Mathematics and Computation, 316 (2018), 138-154.
doi: 10.1016/j.amc.2017.08.028.
|
[8]
|
S. Chen and Y.-T. Zhang, Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods, Journal of Computational Physics, 230 (2011), 4336-4352.
doi: 10.1016/j.jcp.2011.01.010.
|
[9]
|
M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Mathematical Biosciences, 33 (1977), 35-49.
doi: 10.1016/0025-5564(77)90062-1.
|
[10]
|
C. Hirota and K. Ozawa, Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations–-an application to the blow-up problems of partial differential equations, Journal of Computational and Applied Mathematics, 193 (2006), 614-637.
doi: 10.1016/j.cam.2005.04.069.
|
[11]
|
T. Jiang and Y.-T. Zhang, Krylov implicit integration factor WENO methods for semi-linear and fully nonlinear advection-diffusion-reaction equations, Journal of Computational Physics, 253 (2013), 368-388.
doi: 10.1016/j.jcp.2013.07.015.
|
[12]
|
F. Li and N. K. Yip, Long time behavior of some epidemic models, Discrete and Continuous Dynamical Systems Series B, 16 (2011), 867-881.
doi: 10.3934/dcdsb.2011.16.867.
|
[13]
|
D. Lu and Y.-T. Zhang, Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations, Journal of Scientific Computing, 69 (2016), 736-763.
doi: 10.1007/s10915-016-0216-7.
|
[14]
|
D. Lu and Y.-T. Zhang, Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems, Journal of Scientific Computing, 73 (2017), 980-1027.
doi: 10.1007/s10915-017-0398-7.
|
[15]
|
R. C. MacCamy, Simple population models with diffusion, Maths with Appls, 9 (1983), 341-344.
doi: 10.1016/0898-1221(83)90021-4.
|
[16]
|
D. B. Meade and F. A. Milner, An S-I-R model for epidemics with diffusion to avoid infection and overcrowding, Proceedings of the 13th IMACS World Congress on Computation and Applied Mathematics, 3 (1991), 1444-1445.
|
[17]
|
D. B. Meade and F. A. Milner, S-I-R epidemic models with directed diffusion., In G. D. Prato, editor, Mathematical Aspects of Human Diseases, 1992.
|
[18]
|
F. A. Milner and R. Zhao, S-I-R model with directed spatial diffusion, Mathematical Population Studies, 15 (2008), 160-181.
doi: 10.1080/08898480802221889.
|
[19]
|
Q. Nie, Y.-T. Zhang and R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006), 521-537.
doi: 10.1016/j.jcp.2005.09.030.
|
[20]
|
Q. Nie, F. Wan, Y.-T. Zhang and X.-F. Liu, Compact integration factor methods in high spatial dimensions, Journal of Computational Physics, 227 (2008), 5238-5255.
doi: 10.1016/j.jcp.2008.01.050.
|
[21]
|
S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991), 907-922.
doi: 10.1137/0728049.
|
[22]
|
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3.
|
[23]
|
C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (Editor: A. Quarteroni), Lecture Notes in Mathematics, volume 1697, Springer, 1998, 325–432.
doi: 10.1007/BFb0096355.
|
[24]
|
J. G. Skellam, Random dispersal in theoretical populations, Biometrika., 38 (1981), 196-218.
doi: 10.1093/biomet/38.1-2.196.
|
[25]
|
G.-Q. Sun, Z. Jin, Q.-X. Liu and L. Li, Spatial pattern in an epidemic system with cross-diffusion of the susceptible, Journal of Biological Systems, 17 (2009), 141-152.
doi: 10.1142/S0218339009002843.
|
[26]
|
D. Wang, W. Chen and Q. Nie, Semi-implicit integration factor methods on sparse grids for high-dimensional systems, Journal of Computational Physics, 292 (2015), 43-55.
doi: 10.1016/j.jcp.2015.03.033.
|
[27]
|
G. F. Webb, A reaction-diffusion model for a deterministic diffusion epidemic, J. Math. Anal. Appl., 84 (1981), 150-161.
doi: 10.1016/0022-247X(81)90156-6.
|
[28]
|
K. E. Yong, E. D. Herrera and and C. Castillo-Chavez, From bee species aggregation to models of disease avoidance: The ben-hur effect., Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, 12 (2016), 169-185.
|
[29]
|
Y.-T. Zhang and C.-W. Shu, High order WENO schemes for Hamilton-Jacobi equations on triangular meshes, SIAM Journal on Scientific Computing, 24 (2003), 1005-1030.
doi: 10.1137/S1064827501396798.
|
[30]
|
Y.-T. Zhang and C.-W. Shu, ENO and WENO schemes, in Handbook of Numerical Analysis, Volume 17, Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, R. Abgrall and C.-W. Shu, Editors, North-Holland, Elsevier, Amsterdam, (2016), 103–122.
|
[31]
|
Y.-T. Zhang, H.-K. Zhao and J. Qian, High order fast sweeping methods for static Hamilton-Jacobi equations, Journal of Scientific Computing, 29 (2006), 25-56.
doi: 10.1007/s10915-005-9014-3.
|