\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A remark on global solutions to random 3D vorticity equations for small initial data

  • * Corresponding author

    * Corresponding author

Supported in part by NSFC (11671035, 11771037). Financial support by the DFG through the CRC 1283"Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications" is acknowledged

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we prove that the solution constructed in [2] satisfies the stochastic vorticity equations with the stochastic integration being understood in the sense of the integration of controlled rough path introduced in [8]. As a result, we obtain the existence and uniqueness of the global solutions to the stochastic vorticity equations in 3D case for the small initial data independent of time, which can be viewed as a stochastic version of the Kato-Fujita result (see [10]).

    Mathematics Subject Classification: 60H15, 82C28.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
    [2] V. Barbu and M. Röckner, Global solutions to random 3D vorticity equations for small initial data, Journal of Differential Equations, 263 (2017), 5395-5411.  doi: 10.1016/j.jde.2017.06.020.
    [3] R. Buckdahn, Linear Skorohod stochastic differential equations, Probab. Th. Rel. Fields, 90 (1991), 223-240.  doi: 10.1007/BF01192163.
    [4] J.-Y. Chemin, Perfect Infompressible Fluids, Oxford Lecture Series in Mathematics and its applications, 14, Oxford Science Publications, 1998.
    [5] G. Da Prato and  J. ZabczykStochastic Equations in Infinite Dimensions, vol. 45 of Encyclopedia of mathematics and its applications, Cambridge University Press, 1992.  doi: 10.1017/CBO9780511666223.
    [6] J. DiehlP. Friz and W. Stannat., Stochastic partial differential equations: A rough path view on weak solutions via Feynman-Kac, Ann. Fac. Sci. Toulouse Math. (6), 26 (2017), 911-947.  doi: 10.5802/afst.1556.
    [7] P. Friz and M. Hairer, A Course on Rough Paths, Springer, 2014. doi: 10.1007/978-3-319-08332-2.
    [8] M. Gubinelli, Controlling rough paths, J. Funct. Anal., 216 (2004), 86-140.  doi: 10.1016/j.jfa.2004.01.002.
    [9] M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi, 3 (2015), e6, 75 pp. doi: 10.1017/fmp.2015.2.
    [10] T. Kato and H. Fujita, On the nonstationary Navier-Stokes system, Rend. Sem. mat. Univ. Padova, 32 (1962), 243-260. 
    [11] J. Mourrat and H. Weber, Global well-posedness of the dynamic $ \Phi^4 $ model in the plane, The Annals of Probability, 45 (2017), 2398-2476.  doi: 10.1214/16-AOP1116.
    [12] D. Nualart, The Malliavin Calculus and Related Topics, Probability and Its Applications (New York), Springer-Verlag, Berlin, 1995. doi: 10.1007/978-1-4757-2437-0.
  • 加载中
SHARE

Article Metrics

HTML views(494) PDF downloads(204) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return