# American Institute of Mathematical Sciences

August  2019, 24(8): 4055-4078. doi: 10.3934/dcdsb.2019050

## Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions

 1 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria 2 Department of Mathematics, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands 3 Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria 4 School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Dai Co Viet No. 1, Hanoi, Vietnam

* Corresponding author: Stefanie Sonner

Received  March 2018 Revised  August 2018 Published  August 2019 Early access  February 2019

Fund Project: Our research was supported by the ASEAN-European Academic University Network (ASEA-UNINET), and partially supported by NAWI Graz, IGDK 1754, and NAFOSTED project 101.01-2017.302.

The stabilisation by noise on the boundary of the Chafee-Infante equation with dynamical boundary conditions subject to a multiplicative Itô noise is studied. In particular, we show that there exists a finite range of noise intensities that imply the exponential stability of the trivial steady state. This differs from previous works on the stabilisation by noise of parabolic PDEs, where the noise acts inside the domain and stabilisation typically occurs for an infinite range of noise intensities. To the best of our knowledge, this is the first result on the stabilisation of PDEs by boundary noise.

Citation: Klemens Fellner, Stefanie Sonner, Bao Quoc Tang, Do Duc Thuan. Stabilisation by noise on the boundary for a Chafee-Infante equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4055-4078. doi: 10.3934/dcdsb.2019050
##### References:
 [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003. [2] E. Alòs and S. Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 125-154.  doi: 10.1016/S0246-0203(01)01097-4. [3] E. Alòs and S. Bonaccorsi, Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 465-481.  doi: 10.1142/S0219025702000948. [4] V. Barbu, Stabilization of Navier–Stokes Flows, Springer, London, 2011. doi: 10.1007/978-0-85729-043-4. [5] T. Caraballo, Recent results on stabilization of PDEs with noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70. [6] T. Caraballo, H. Crauel, J. Langa and J. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proceedings of the American Mathematical Society, 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5. [7] T. Caraballo and P. E. Kloeden, Stabilization of evolution equations by noise, Interdiscip. Math. Sci., 8 (2010), World Sci. Publ., Hackensack, NJ, 43–66. doi: 10.1142/9789814277266_0003. [8] T. Caraballo, P. E. Kloeden and B. Schmalfuß, Stabilization of stationary solutions of evolution equations by noise, Discrete Conts. Dyn. Systems, Series B., 6 (2006), 1199-1212.  doi: 10.3934/dcdsb.2006.6.1199. [9] T. Caraballo, K. Liu and X. R. Mao, On stabilization of partial differential equations by noise, Nagoya Math. J., 161 (2001), 155-170.  doi: 10.1017/S0027763000022169. [10] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Reprint of the second edition, Oxford University Press, New York, 1988. [11] R. Czaja and P. Marín-Rubio, Pullback exponential attractors for parabolic equations with dynamical boundary conditions, Taiwanese J. Math., 21 (2017), 819-839.  doi: 10.11650/tjm/7862. [12] A. Debussche, M. Fuhrman and G. Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control, ESAIM: Control, Optimisation and Calculus of Variations, 13 (2007), 178-205.  doi: 10.1051/cocv:2007001. [13] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.  doi: 10.1080/03605309308820976. [14] A. Filinovskiy, On the eigenvalues of a Robin problem with a large parameter, Mathematica Bohemica, 139 (2014), 341-352. [15] A. Filinovskiy, On the Asymptotic Behavior of the First Eigenvalue of Robin Problem With Large Parameter, J. Elliptic Para. Equations, 1 (2015), 123-135.  doi: 10.1007/BF03377372. [16] L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16194-0. [17] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. [18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Lecture Notes in Mathematics, 1981. [19] H. Kovařík, On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions, J. Geom. Anal., 24 (2014), 1509-1525.  doi: 10.1007/s12220-012-9383-4. [20] A. A. Kwiecinska, Stabilization of partial differential equations by noise, Stoch. Proc. & Appl., 79 (1999), 179-184.  doi: 10.1016/S0304-4149(98)00080-5. [21] J.-L. Lions, Quelques Méthodes de Résolution des Probl'emes aux Limites non Linéaires, (French), Dunod; Gauthier-Villars, Paris, 1969. [22] K. Liu, On stability for a class of semilinear stochastic evolution equations, Stochastic Process. Appl., 70 (1997), 219-241.  doi: 10.1016/S0304-4149(97)00062-8. [23] K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Diff. Eqs., 93 (1991), 364-394.  doi: 10.1016/0022-0396(91)90017-4. [24] X. R. Mao, Stochastic stabilization and destabilization, Control Letters, 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7. [25] I. Munteanu, Stabilization of stochastic parabolic equations with boundary-noise and boundary-control, J. Math. Anal. Appl., 449 (2017), 829-842.  doi: 10.1016/j.jmaa.2016.12.047. [26] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastic Process. Appl., 3 (1979), 127-167.  doi: 10.1080/17442507908833142. [27] M. Sofonea and A. Matei, Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems, Vol. 18, Springer Science & Business Media, 2009. [28] R. B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations, Ann. Probab., 22 (1994), 2071-2121.  doi: 10.1214/aop/1176988495.

show all references

##### References:
 [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Second edition, Elsevier/Academic Press, Amsterdam, 2003. [2] E. Alòs and S. Bonaccorsi, Stochastic partial differential equations with Dirichlet white-noise boundary conditions, Ann. Inst. H. Poincaré Probab. Statist., 38 (2002), 125-154.  doi: 10.1016/S0246-0203(01)01097-4. [3] E. Alòs and S. Bonaccorsi, Stability for stochastic partial differential equations with Dirichlet white-noise boundary conditions, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5 (2002), 465-481.  doi: 10.1142/S0219025702000948. [4] V. Barbu, Stabilization of Navier–Stokes Flows, Springer, London, 2011. doi: 10.1007/978-0-85729-043-4. [5] T. Caraballo, Recent results on stabilization of PDEs with noise, Bol. Soc. Esp. Mat. Apl., 37 (2006), 47-70. [6] T. Caraballo, H. Crauel, J. Langa and J. Robinson, The effect of noise on the Chafee-Infante equation: A nonlinear case study, Proceedings of the American Mathematical Society, 135 (2007), 373-382.  doi: 10.1090/S0002-9939-06-08593-5. [7] T. Caraballo and P. E. Kloeden, Stabilization of evolution equations by noise, Interdiscip. Math. Sci., 8 (2010), World Sci. Publ., Hackensack, NJ, 43–66. doi: 10.1142/9789814277266_0003. [8] T. Caraballo, P. E. Kloeden and B. Schmalfuß, Stabilization of stationary solutions of evolution equations by noise, Discrete Conts. Dyn. Systems, Series B., 6 (2006), 1199-1212.  doi: 10.3934/dcdsb.2006.6.1199. [9] T. Caraballo, K. Liu and X. R. Mao, On stabilization of partial differential equations by noise, Nagoya Math. J., 161 (2001), 155-170.  doi: 10.1017/S0027763000022169. [10] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Reprint of the second edition, Oxford University Press, New York, 1988. [11] R. Czaja and P. Marín-Rubio, Pullback exponential attractors for parabolic equations with dynamical boundary conditions, Taiwanese J. Math., 21 (2017), 819-839.  doi: 10.11650/tjm/7862. [12] A. Debussche, M. Fuhrman and G. Tessitore, Optimal control of a stochastic heat equation with boundary-noise and boundary-control, ESAIM: Control, Optimisation and Calculus of Variations, 13 (2007), 178-205.  doi: 10.1051/cocv:2007001. [13] J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Partial Differential Equations, 18 (1993), 1309-1364.  doi: 10.1080/03605309308820976. [14] A. Filinovskiy, On the eigenvalues of a Robin problem with a large parameter, Mathematica Bohemica, 139 (2014), 341-352. [15] A. Filinovskiy, On the Asymptotic Behavior of the First Eigenvalue of Robin Problem With Large Parameter, J. Elliptic Para. Equations, 1 (2015), 123-135.  doi: 10.1007/BF03377372. [16] L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Differential Equations, Springer-Verlag Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-16194-0. [17] G. R. Goldstein, Derivation and physical interpretation of general boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. [18] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Lecture Notes in Mathematics, 1981. [19] H. Kovařík, On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions, J. Geom. Anal., 24 (2014), 1509-1525.  doi: 10.1007/s12220-012-9383-4. [20] A. A. Kwiecinska, Stabilization of partial differential equations by noise, Stoch. Proc. & Appl., 79 (1999), 179-184.  doi: 10.1016/S0304-4149(98)00080-5. [21] J.-L. Lions, Quelques Méthodes de Résolution des Probl'emes aux Limites non Linéaires, (French), Dunod; Gauthier-Villars, Paris, 1969. [22] K. Liu, On stability for a class of semilinear stochastic evolution equations, Stochastic Process. Appl., 70 (1997), 219-241.  doi: 10.1016/S0304-4149(97)00062-8. [23] K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations, J. Diff. Eqs., 93 (1991), 364-394.  doi: 10.1016/0022-0396(91)90017-4. [24] X. R. Mao, Stochastic stabilization and destabilization, Control Letters, 23 (1994), 279-290.  doi: 10.1016/0167-6911(94)90050-7. [25] I. Munteanu, Stabilization of stochastic parabolic equations with boundary-noise and boundary-control, J. Math. Anal. Appl., 449 (2017), 829-842.  doi: 10.1016/j.jmaa.2016.12.047. [26] E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastic Process. Appl., 3 (1979), 127-167.  doi: 10.1080/17442507908833142. [27] M. Sofonea and A. Matei, Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems, Vol. 18, Springer Science & Business Media, 2009. [28] R. B. Sowers, Multidimensional reaction-diffusion equations with white noise boundary perturbations, Ann. Probab., 22 (1994), 2071-2121.  doi: 10.1214/aop/1176988495.
 [1] Irena Lasiecka, Roberto Triggiani. A sharp trace result on a thermo-elastic plate equation with coupled hinged/Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 585-598. doi: 10.3934/dcds.1999.5.585 [2] Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441 [3] Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375 [4] Enzo Vitillaro. Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4575-4608. doi: 10.3934/dcdss.2021130 [5] Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 [6] Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825 [7] Peter Brune, Björn Schmalfuss. Inertial manifolds for stochastic pde with dynamical boundary conditions. Communications on Pure and Applied Analysis, 2011, 10 (3) : 831-846. doi: 10.3934/cpaa.2011.10.831 [8] Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000 [9] Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems and Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151 [10] Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315 [11] Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 [12] Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255 [13] Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 [14] Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems and Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034 [15] Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007 [16] Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control and Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 [17] Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285 [18] Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259 [19] Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193 [20] Joachim von Below, Gaëlle Pincet Mailly. Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions. Conference Publications, 2007, 2007 (Special) : 1031-1041. doi: 10.3934/proc.2007.2007.1031

2021 Impact Factor: 1.497