-
Previous Article
Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients
- DCDS-B Home
- This Issue
-
Next Article
Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations
Attractors for A sup-cubic weakly damped wave equation in $ \mathbb{R}^{3} $
1. | School of Mathematical and Statistics, Lanzhou University, Lanzhou, Gansu, China |
In this paper, the dynamical behavior of weakly damped wave equations with a sup-cubic nonlinearity is considered in locally uniform spaces. We first prove the global well-posedness of the Shatah-Struwe solutions, then we obtain the existence of the $ \big(H_{lu}^{1}(\mathbb{R}^{3})\times L_{lu}^{2}(\mathbb{R}^{3}),H_{\rho}^{1}(\mathbb{R}^{3})\times L_{\rho}^{2}(\mathbb{R}^{3})\big) $-global attractor for the Shatah-Struwe solutions semigroup of this equation. The results are crucially based on the recent extension of Strichartz estimates to the case of bounded domains.
References:
[1] |
J. Arrieta, A. N. Carvalho and J. K. Hale,
A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.
doi: 10.1080/03605309208820866. |
[2] |
J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal,
Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.
doi: 10.1142/S0218202504003234. |
[3] |
J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal,
Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.
doi: 10.1002/mana.200510569. |
[4] |
A. V. Babin and M. I. Vishik,
Attractor of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.
doi: 10.1017/S0308210500031498. |
[5] |
A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992. |
[6] |
J. M. Ball,
Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[7] |
M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 26 (2009), 1817–1829.
doi: 10.1016/j.anihpc.2008.12.004. |
[8] |
N. Burq, G. Lebeau and F. Planchon,
Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.
doi: 10.1090/S0894-0347-08-00596-1. |
[9] |
N. Burq and F. Planchon,
Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.
doi: 10.1353/ajm.0.0084. |
[10] |
A. N. Carvalho and T. Dlotko,
Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.
doi: 10.4064/cm100-2-6. |
[11] |
J. W. Cholewa and T. Dlotko,
Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.
doi: 10.4064/ba52-3-5. |
[12] |
J. W. Cholewa and T. Dlotko,
Cauchy problems in weighted Lebesgue spaces, Czechoslovak Math. J., 54 (2004), 991-1013.
doi: 10.1007/s10587-004-6447-z. |
[13] |
J. W. Cholewa and T. Dlotko,
Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.
doi: 10.1016/j.na.2005.06.021. |
[14] |
J. W. Cholewa and A. Rodríguez-Bernal,
Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.
doi: 10.1016/j.jmaa.2016.11.085. |
[15] |
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., vol. 195, (Providence, RI: American Mathematical Society), 2008.
doi: 10.1090/memo/0912. |
[16] |
M. A. Efendiev and S. V. Zelik,
The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.
doi: 10.1002/cpa.1011. |
[17] |
E. Feireisl, P. Laurençot, F. Simondon and H. Tour$\acute{e}$, Compact attractors for reaction-diffusion equations in $\mathbb{R}^{N}$, C. R. Acad. Sci. Paris S$\acute{e}$r. I Math., 319 (1994), 147–151. |
[18] |
E. Feireisl,
Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.
doi: 10.1017/S0308210500022630. |
[19] |
E. Feireisl,
Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.
|
[20] |
V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincar$\acute{e}$, 17 (2016), 2555–2584.
doi: 10.1007/s00023-016-0480-y. |
[21] |
L. Kapitanski,
Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.
doi: 10.1080/03605309508821133. |
[22] |
A. Kh. Khanmamedov,
Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.
doi: 10.1016/j.jmaa.2005.05.031. |
[23] |
J. L. Lions, Quelques M$\acute{e}$thodes de R$\acute{e}$solution des Probl$\grave{e}$mes aux Limites Nonlin$\acute{e}$aires, Dunod, Paris, 1969. |
[24] |
S. Merino,
On the existence of the compact global attractor for semilinear reaction diffusion systems on $\mathbb{R}^{N}$, J. Differential Equations, 132 (1996), 87-106.
doi: 10.1006/jdeq.1996.0172. |
[25] |
M. Mich$\acute{a}$lek, D. Pra$\check{z}\acute{a}$k and J. Slavík,
Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.
doi: 10.3934/cpaa.2017080. |
[26] |
A. Mielke and G. Schneider,
Attractors for modulation equations unbounded domains–existence and comparison, Nonlinearity, 8 (1995), 743-768.
doi: 10.1088/0951-7715/8/5/006. |
[27] |
A. Mielke,
The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.
doi: 10.1088/0951-7715/10/1/014. |
[28] |
A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, vol. Ⅳ, Elsevier, Amsterdam, (2008), 103–200.
doi: 10.1016/S1874-5717(08)00003-0. |
[29] |
A. Savostianov and S. V. Zelik,
Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.
|
[30] |
A. Savostianov,
Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.
|
[31] |
C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008. |
[32] |
C.Y. Sun, D. M. Cao and J. Q. Duan,
Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.
doi: 10.1088/0951-7715/19/11/008. |
[33] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006.
doi: 10.1090/cbms/106. |
[34] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[35] |
M. I. Vishik and S. V. Zelik,
A trajectory attractor of a nonlinear elliptic system in a cylindrical domain, Mat. Sb., 187 (1996), 21-56.
doi: 10.1070/SM1996v187n12ABEH000177. |
[36] |
M. H. Yang and C. Y. Sun,
Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc., 361 (2009), 1069-1101.
doi: 10.1090/S0002-9947-08-04680-1. |
[37] |
S. V. Zelik,
The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.
doi: 10.3934/dcds.2001.7.593. |
show all references
References:
[1] |
J. Arrieta, A. N. Carvalho and J. K. Hale,
A damped hyperbolic equation with critical exponent, Comm. Partial Differential Equations, 17 (1992), 841-866.
doi: 10.1080/03605309208820866. |
[2] |
J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal,
Linear parabolic equations in locally spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293.
doi: 10.1142/S0218202504003234. |
[3] |
J. Arrieta, J. W. Cholewa, T. Dlotko and A. Rodríguez-Bernal,
Dissipative parabolic equations in locally uniform spaces, Math. Nachr., 280 (2007), 1643-1663.
doi: 10.1002/mana.200510569. |
[4] |
A. V. Babin and M. I. Vishik,
Attractor of partial differential evolution equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990), 221-243.
doi: 10.1017/S0308210500031498. |
[5] |
A. V. Babin and M. I. Vishik, Attractors of Evolutionary Equations, Stud. Math. Appl., vol. 25, North-Holland, Amsterdam, 1992. |
[6] |
J. M. Ball,
Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.
doi: 10.3934/dcds.2004.10.31. |
[7] |
M. D. Blair, H. F. Smith and C. D. Sogge, Strichartz estimates for the wave equation on manifolds with boundary, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 26 (2009), 1817–1829.
doi: 10.1016/j.anihpc.2008.12.004. |
[8] |
N. Burq, G. Lebeau and F. Planchon,
Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., 21 (2008), 831-845.
doi: 10.1090/S0894-0347-08-00596-1. |
[9] |
N. Burq and F. Planchon,
Global existence for energy critical waves in 3-D domains: Neumann boundary conditions, Amer. J. Math., 131 (2009), 1715-1742.
doi: 10.1353/ajm.0.0084. |
[10] |
A. N. Carvalho and T. Dlotko,
Partly dissipative systems in uniformly local spaces, Colloq. Math., 100 (2004), 221-242.
doi: 10.4064/cm100-2-6. |
[11] |
J. W. Cholewa and T. Dlotko,
Hyperbolic equations in uniform spaces, Bull. Pol. Acad. Sci. Math., 52 (2004), 249-263.
doi: 10.4064/ba52-3-5. |
[12] |
J. W. Cholewa and T. Dlotko,
Cauchy problems in weighted Lebesgue spaces, Czechoslovak Math. J., 54 (2004), 991-1013.
doi: 10.1007/s10587-004-6447-z. |
[13] |
J. W. Cholewa and T. Dlotko,
Strongly damped wave equation in uniform spaces, Nonlinear Anal., 64 (2006), 174-187.
doi: 10.1016/j.na.2005.06.021. |
[14] |
J. W. Cholewa and A. Rodríguez-Bernal,
Linear higher order parabolic problems in locally uniform Lebesgue's spaces, J. Math. Anal. Appl., 449 (2017), 1-45.
doi: 10.1016/j.jmaa.2016.11.085. |
[15] |
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., vol. 195, (Providence, RI: American Mathematical Society), 2008.
doi: 10.1090/memo/0912. |
[16] |
M. A. Efendiev and S. V. Zelik,
The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.
doi: 10.1002/cpa.1011. |
[17] |
E. Feireisl, P. Laurençot, F. Simondon and H. Tour$\acute{e}$, Compact attractors for reaction-diffusion equations in $\mathbb{R}^{N}$, C. R. Acad. Sci. Paris S$\acute{e}$r. I Math., 319 (1994), 147–151. |
[18] |
E. Feireisl,
Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062.
doi: 10.1017/S0308210500022630. |
[19] |
E. Feireisl,
Bounded, locally compact global attractors for semilinear damped wave equations on $\mathbb{R}^{N}$, Differential Integral Equations, 9 (1996), 1147-1156.
|
[20] |
V. Kalantarov, A. Savostianov and S. V. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincar$\acute{e}$, 17 (2016), 2555–2584.
doi: 10.1007/s00023-016-0480-y. |
[21] |
L. Kapitanski,
Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323.
doi: 10.1080/03605309508821133. |
[22] |
A. Kh. Khanmamedov,
Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.
doi: 10.1016/j.jmaa.2005.05.031. |
[23] |
J. L. Lions, Quelques M$\acute{e}$thodes de R$\acute{e}$solution des Probl$\grave{e}$mes aux Limites Nonlin$\acute{e}$aires, Dunod, Paris, 1969. |
[24] |
S. Merino,
On the existence of the compact global attractor for semilinear reaction diffusion systems on $\mathbb{R}^{N}$, J. Differential Equations, 132 (1996), 87-106.
doi: 10.1006/jdeq.1996.0172. |
[25] |
M. Mich$\acute{a}$lek, D. Pra$\check{z}\acute{a}$k and J. Slavík,
Semilinear damped wave equation in locally uniform spaces, Commun. Pure Appl. Anal., 16 (2017), 1673-1695.
doi: 10.3934/cpaa.2017080. |
[26] |
A. Mielke and G. Schneider,
Attractors for modulation equations unbounded domains–existence and comparison, Nonlinearity, 8 (1995), 743-768.
doi: 10.1088/0951-7715/8/5/006. |
[27] |
A. Mielke,
The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors, Nonlinearity, 10 (1997), 199-222.
doi: 10.1088/0951-7715/10/1/014. |
[28] |
A. Miranville and S. V. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, vol. Ⅳ, Elsevier, Amsterdam, (2008), 103–200.
doi: 10.1016/S1874-5717(08)00003-0. |
[29] |
A. Savostianov and S. V. Zelik,
Recent progress in attractors for quintic wave equations, Math. Bohem., 139 (2014), 657-665.
|
[30] |
A. Savostianov,
Strichartz estimates and smooth attractors for a sub-quintic wave equation with fractional damping in bounded domains, Adv. Differential Equations, 20 (2015), 495-530.
|
[31] |
C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd edition, International Press, Boston, 2008. |
[32] |
C.Y. Sun, D. M. Cao and J. Q. Duan,
Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645-2665.
doi: 10.1088/0951-7715/19/11/008. |
[33] |
T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regi. Conf. Seri. Math., Providence, vol. 106. Washington, 2006.
doi: 10.1090/cbms/106. |
[34] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. App. Math. Sci., vol. 68. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[35] |
M. I. Vishik and S. V. Zelik,
A trajectory attractor of a nonlinear elliptic system in a cylindrical domain, Mat. Sb., 187 (1996), 21-56.
doi: 10.1070/SM1996v187n12ABEH000177. |
[36] |
M. H. Yang and C. Y. Sun,
Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc., 361 (2009), 1069-1101.
doi: 10.1090/S0002-9947-08-04680-1. |
[37] |
S. V. Zelik,
The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dyn. Syst., 7 (2001), 593-641.
doi: 10.3934/dcds.2001.7.593. |
[1] |
Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080 |
[2] |
Gaocheng Yue, Chengkui Zhong. Global attractors for the Gray-Scott equations in locally uniform spaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 337-356. doi: 10.3934/dcdsb.2016.21.337 |
[3] |
Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305 |
[4] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 |
[5] |
Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107 |
[6] |
Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094 |
[7] |
Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410 |
[8] |
Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure and Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301 |
[9] |
Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743 |
[10] |
Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939 |
[11] |
Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179 |
[12] |
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 217-230. doi: 10.3934/dcdsb.2014.19.217 |
[13] |
Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079 |
[14] |
Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639 |
[15] |
Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695 |
[16] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[17] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[18] |
Ming Wang. Global attractor for weakly damped gKdV equations in higher sobolev spaces. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3799-3825. doi: 10.3934/dcds.2015.35.3799 |
[19] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 |
[20] |
Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]