\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of synchronization under stochastic perturbations in leaky integrate and fire neural networks of finite size

  • * Corresponding author

    * Corresponding author
Abstract / Introduction Full Text(HTML) Figure(5) Related Papers Cited by
  • We study the synchronization of fully-connected and totally excitatory integrate and fire neural networks in presence of Gaussian white noises. Using a large deviation principle, we prove the stability of the synchronized state under stochastic perturbations. Then, we give a lower bound on the probability of synchronization for networks which are not initially synchronized. This bound shows the robustness of the emergence of synchronization in presence of small stochastic perturbations.

    Mathematics Subject Classification: Primary: 92B25, 92B20; Secondary: 60F10, 60J75.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Simulation of the model for $ N = 3 $, $\gamma = 100$ $ \text{s}^{-1} $, $ \beta = -52 $ mV, $\theta = -55$ mV, $ V_r = -70 $ mV, $ \varepsilon = 2.25\times10^{-4} $ $ \text{V}^2/\text{s} $ and $ H_{ji} = 1.5 $ mV for all $ i\neq j\in\{1,2,3\} $

    Figure 2.  $\mathbb{P}\left(S_{n+1}^\varepsilon\middle|S_{n}^\varepsilon\right)$ versus $\varepsilon$ for $N = 1599$, $\gamma = 100$ $\text{s}^{-1}$, $\theta = -55$ mV, $V_r = -70$ mV, $m = 0.75$ mV. Red plot $\beta = -52$ mV, green plot $\beta = -54.7$ mV and blue plot $\beta = -55.3$ mV. $\varepsilon\in[0, 2.5\times 10^{-3}\text{V}^2/\text{s}]$

    Figure 3.  Zoom on Fig.2 for $\varepsilon\in[0,2.25\times 10^{-4}\text{V}^2/\text{s}]$.

    Figure 4.  $ \mathbb{P}\left(BS_{n}^\varepsilon\right) $ versus $ n $. The values of the parameters are: $ N = 1599 $, $ \gamma = 100 $ $ \text{s}^{-1} $, $ \theta = -55 $ mV, $ V_r = -70 $ mV, $ \beta = -52 $ mV and $ \varepsilon = 0.225\times 10^{-4}\text{V}^2/\text{s} $. Magenta $ m = 0.0150 $ mV, green $ m = 0.0225 $ mV, blue $ m = 0.0270 $ mV and orange $ m = 0.0300 $ mV. The initial distribution of the membrane potentials are i.i.d. with uniform law on \([-100\text{ mV}, -55\text{ mV}]\)

    Figure 5.  $ \mathbb{P}\left(BS_{n}^\varepsilon \setminus BS^\varepsilon_{n-1}\right) $ probability of first synchronization at the $ n $-th firing instant versus $ n $. The values of the parameters are: $ N = 1599 $, $ \gamma = 100 $ $ \text{s}^{-1} $, $ \theta = -55 $ mV, $ V_r = -70 $ mV, $ \beta = -52 $ mV and $ \varepsilon = 0.225\times 10^{-4}\text{V}^2/\text{s} $. Magenta $ m = 0.0150 $ mV, green $ m = 0.0225 $ mV, blue $ m = 0.0270 $ mV and orange $ m = 0.0300 $ mV. The initial distribution of the membrane potentials are i.i.d. with uniform law on \([-100\text{ mV}, -55\text{ mV}]\)

  • [1] P. Bressloff and S. Coombes, Travelling waves in chains of pulse-coupled integrate-and-fire oscillators with distributed delays, Phys. D, 130 (1999), 232-254.  doi: 10.1016/S0167-2789(99)00013-5.
    [2] P. C. Bressloff and S. Coombes, Dynamics of strongly coupled spiking neurons, Neural Comput., 12 (2000), 91-129.  doi: 10.1162/089976600300015907.
    [3] N. Brunel and D. Hansel, How Noise Affects the Synchronization Properties of Recurrent Networks of Inhibitory Neurons, Neural Comput., 18 (2006), 1066-1110.  doi: 10.1162/neco.2006.18.5.1066.
    [4] E. Catsigeras and P. Guiraud, Integrate and fire neural networks, piecewise contractive maps and limit cycles, J. Math. Biol., 67 (2013), 609-655.  doi: 10.1007/s00285-012-0560-7.
    [5] F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Particle systems with a singular mean-field self-excitation. application to neuronal networks, Stochastic Process. Appl., 125 (2015), 2451-2492.  doi: 10.1016/j.spa.2015.01.007.
    [6] F. DelarueJ. InglisS. Rubenthaler and E. Tanré, Global solvability of a networked integrate-and-fire model of mckean-vlasov type, Ann. Appl. Probab., 25 (2015), 2096-2133.  doi: 10.1214/14-AAP1044.
    [7] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, volume 38 of Stochastic Modelling and Applied Probability, Springer-Verlag, Berlin, 2010. Corrected reprint of the second (1998) edition. doi: 10.1007/978-3-642-03311-7.
    [8] G. Dumont and J. Henry, Synchronization of an excitatory integrate-and-fire neural network, Bull. Math. Biol., 75 (2013), 629-648.  doi: 10.1007/s11538-013-9823-8.
    [9] W. Gerstner and  W. M. KistlerSpiking Neuron Models: Single Neurons, Populations, Plasticity, Cambridge university press, 2002.  doi: 10.1017/CBO9780511815706.
    [10] F. HammondH. Bergman and P. Brown, Pathological synchronization in Parkinson's disease: Networks, models and treatments, Trends Neurosci, 30 (2007), 357-364.  doi: 10.1016/j.tins.2007.05.004.
    [11] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected Neural Networks, volume 126, Springer, 1997. doi: 10.1007/978-1-4612-1828-9.
    [12] E. M. Izhikevich, Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models, IEEE Transactions on Neural Networks, 10 (1999), 1171-1266.  doi: 10.1142/S0218127400000840.
    [13] E. M. Izhikevich, Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory, IEEE Transactions on Neural Networks, 10 (1999), 508-526. 
    [14] R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662.  doi: 10.1137/0150098.
    [15] K. A. Newhall, G. Kovačič, P. R. Kramer and D. Cai, Cascade-induced synchrony in stochastically driven neuronal networks, Phys. Rev. E, 82 (2010), 041903, 17pp. doi: 10.1103/PhysRevE.82.041903.
    [16] K. A. NewhallG. KovačičP. R. KramerD. ZhouA. V. Rangan and D. Cai, Dynamics of current-based, Poisson driven, integrate-and-fire neuronal networks, Commun. Math. Sci., 8 (2010), 541-600.  doi: 10.4310/CMS.2010.v8.n2.a12.
    [17] L. Sacerdote and M. T. Giraudo, Stochastic integrate and fire models: A review on mathematical methods and their applications, In Stochastic Biomathematical Models, volume 2058 of Lecture Notes in Math., pages 99-148. Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-32157-3_5.
    [18] L. Sacerdote and C. Zucca, Joint distribution of first exit times of a two dimensional Wiener process with jumps with application to a pair of coupled neurons, Math. Biosci., 245 (2013), 61-69.  doi: 10.1016/j.mbs.2013.06.005.
    [19] J. Touboul and O. Faugeras, A markovian event-based framework for stochastic spiking neural networks, J. Comput. Neurosci., 31 (2011), 485-507.  doi: 10.1007/s10827-011-0327-y.
    [20] T. S. TurovaW. Mommaerts and and E. C. van der Meulen, Synchronization of firing times in a stochastic neural network model with excitatory connections, Stochastic Process. Appl., 50 (1994), 173-186.  doi: 10.1016/0304-4149(94)90155-4.
    [21] C. Van Vreeswijk, Partial synchronization in populations of pulse-coupled oscillators, Phys. Rev. E, 54 (1996), 5522. doi: 10.1103/PhysRevE.54.5522.
    [22] C. Van VreeswijkL. Abbott and G. B. Ermentrout, When inhibition not excitation synchronizes neural firing, J. Comput. Neurosci., 1 (1994), 313-321.  doi: 10.1007/BF00961879.
  • 加载中

Figures(5)

SHARE

Article Metrics

HTML views(2108) PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return