
-
Previous Article
$ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity
- DCDS-B Home
- This Issue
-
Next Article
Alzheimer's disease and prion: An in vitro mathematical model
Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip
1. | Department of Mathematical Sciences, Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama 337-8570, Japan |
2. | Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University, Aramaki-machi 4-2, Maebashi, 371-8510 Gunma, Japan |
We present a new ODE approach for an evolving polygonal spiral by the crystalline eikonal-curvature flow with a fixed center. In this approach, we introduce a mechanism of new facet generation at the center of the growing spiral, which is based on the theory of two-dimensional nucleation. We prove the existence, uniqueness and intersection free of solution to our formulation globally-in-time. In the proof of the existence we also prove that new facets are generated repeatedly in time. The comparison result of the normal velocity between inner and outer facets with the same normal direction leads intersection-free result. The normal velocities are positive after the next new facet is generated, so that the center is always behind of the moving facets.
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
W. K. Burton, N. Cabrera and F. C. Frank,
The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 243 (1951), 299-358.
doi: 10.1098/rsta.1951.0006. |
[5] |
R. E. Caflisch,
Growth, structure and pattern formation for thin films, J. Sci. Comput., 37 (2008), 3-17.
doi: 10.1007/s10915-008-9206-8. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flow, to appear in J. Amer. Math. Soc., arXiv: 1702.03094. |
[7] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[9] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[10] |
N. Forcadel, C. Imbert and R. Monneau,
Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces Free Bound., 14 (2012), 365-400.
doi: 10.4171/IFB/285. |
[11] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[12] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99, Birkhäuser Verlag, Basel, 2006. |
[13] |
Y. Giga and N. Požár,
A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631-698.
|
[14] |
Y. Giga and N. Požár,
Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow, Comm. Pure Appl. Math., 71 (2018), 1461-1491.
doi: 10.1002/cpa.21752. |
[15] |
M. A. Grayson,
The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
doi: 10.4310/jdg/1214441371. |
[16] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.
![]() ![]() |
[17] |
H. Imai, N. Ishimura and T. Ushijima,
Motion of spirals by crystalline curvature, M2AN Math. Model. Numer. Anal., 33 (1999), 797-806.
doi: 10.1051/m2an:1999164. |
[18] |
T. Ishiwata,
Motion of non-convex polygons by crystalline curvature and almost convexity phenomena, Japan J. Indust. Appl. Math., 25 (2008), 233-253.
doi: 10.1007/BF03167521. |
[19] |
T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity, Discrete Contin. Dyn. Syst., 2011,717–726.
doi: 10.3934/proc.2011.2011.717. |
[20] |
T. Ishiwata,
On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 865-873.
doi: 10.3934/dcdss.2011.4.865. |
[21] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[22] |
T. Ishiwata, T. K. Ushijima, H. Yagisita and S. Yazaki,
Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 151-154.
doi: 10.3792/pjaa.80.151. |
[23] |
A. Karma and M. Plapp,
Spiral surface growth without desorption, Phys. Rev. Lett., 81 (1998), 4444-4447.
doi: 10.1103/PhysRevLett.81.4444. |
[24] |
R. Kobayashi,
A brief introduction to phase field method, AIP Conf. Proc., 1270 (2010), 282-291.
doi: 10.1063/1.3476232. |
[25] |
H. Miura and R. Kobayashi,
Phase-field modeling of step dynamics on growing crystal surface: Direct integration of growth units to step front, Crystal Growth & Design, 15 (2015), 2165-2175.
doi: 10.1021/cg501806d. |
[26] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[27] |
T. Ohtsuka, Y.-H. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[28] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[29] |
T. Ohtsuka,
Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317.
|
[30] |
A. G. Shtukenberg, Z. Zhu, Z. An, M. Bhandari, P. Song, B. Kahr and M. D. Ward,
Illusory spirals and loops in crystal growth, Proc. Natl. Acad. Sci. USA, 110 (2013), 17195-17198.
doi: 10.1073/pnas.1311637110. |
[31] |
P. Smereka,
Spiral crystal growth, Physica D. Nonlinear Phenomena, 138 (2000), 282-301.
doi: 10.1016/S0167-2789(99)00216-X. |
[32] |
I. Sunagawa and P. Bennema, Morphology of growth spirals: Theoretical and experimental, in Preparation and Properties of Solid State Materials: Vol. 7, Growth Mechanisms and Silicon Nitride, 1–129. |
[33] |
J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991,321–336. |
[34] |
S. Yazaki,
Point-extinction and geometric expansion of solutions to a crystalline motion, Hokkaido Math. J., 30 (2001), 327-357.
doi: 10.14492/hokmj/1350911957. |
show all references
References:
[1] |
F. Almgren and J. E. Taylor,
Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030. |
[2] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[3] |
S. Angenent and M. E. Gurtin,
Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068. |
[4] |
W. K. Burton, N. Cabrera and F. C. Frank,
The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 243 (1951), 299-358.
doi: 10.1098/rsta.1951.0006. |
[5] |
R. E. Caflisch,
Growth, structure and pattern formation for thin films, J. Sci. Comput., 37 (2008), 3-17.
doi: 10.1007/s10915-008-9206-8. |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flow, to appear in J. Amer. Math. Soc., arXiv: 1702.03094. |
[7] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97. |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione,
Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668. |
[9] |
B. Engquist, A.-K. Tornberg and R. Tsai,
Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018. |
[10] |
N. Forcadel, C. Imbert and R. Monneau,
Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces Free Bound., 14 (2012), 365-400.
doi: 10.4171/IFB/285. |
[11] |
M.-H. Giga and Y. Giga,
Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154. |
[12] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99, Birkhäuser Verlag, Basel, 2006. |
[13] |
Y. Giga and N. Požár,
A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631-698.
|
[14] |
Y. Giga and N. Požár,
Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow, Comm. Pure Appl. Math., 71 (2018), 1461-1491.
doi: 10.1002/cpa.21752. |
[15] |
M. A. Grayson,
The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
doi: 10.4310/jdg/1214441371. |
[16] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.
![]() ![]() |
[17] |
H. Imai, N. Ishimura and T. Ushijima,
Motion of spirals by crystalline curvature, M2AN Math. Model. Numer. Anal., 33 (1999), 797-806.
doi: 10.1051/m2an:1999164. |
[18] |
T. Ishiwata,
Motion of non-convex polygons by crystalline curvature and almost convexity phenomena, Japan J. Indust. Appl. Math., 25 (2008), 233-253.
doi: 10.1007/BF03167521. |
[19] |
T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity, Discrete Contin. Dyn. Syst., 2011,717–726.
doi: 10.3934/proc.2011.2011.717. |
[20] |
T. Ishiwata,
On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 865-873.
doi: 10.3934/dcdss.2011.4.865. |
[21] |
T. Ishiwata,
Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53. |
[22] |
T. Ishiwata, T. K. Ushijima, H. Yagisita and S. Yazaki,
Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 151-154.
doi: 10.3792/pjaa.80.151. |
[23] |
A. Karma and M. Plapp,
Spiral surface growth without desorption, Phys. Rev. Lett., 81 (1998), 4444-4447.
doi: 10.1103/PhysRevLett.81.4444. |
[24] |
R. Kobayashi,
A brief introduction to phase field method, AIP Conf. Proc., 1270 (2010), 282-291.
doi: 10.1063/1.3476232. |
[25] |
H. Miura and R. Kobayashi,
Phase-field modeling of step dynamics on growing crystal surface: Direct integration of growth units to step front, Crystal Growth & Design, 15 (2015), 2165-2175.
doi: 10.1021/cg501806d. |
[26] |
A. Oberman, S. Osher, R. Takei and R. Tsai,
Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1. |
[27] |
T. Ohtsuka, Y.-H. Tsai and Y. Giga,
A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2. |
[28] |
T. Ohtsuka,
A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
|
[29] |
T. Ohtsuka,
Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317.
|
[30] |
A. G. Shtukenberg, Z. Zhu, Z. An, M. Bhandari, P. Song, B. Kahr and M. D. Ward,
Illusory spirals and loops in crystal growth, Proc. Natl. Acad. Sci. USA, 110 (2013), 17195-17198.
doi: 10.1073/pnas.1311637110. |
[31] |
P. Smereka,
Spiral crystal growth, Physica D. Nonlinear Phenomena, 138 (2000), 282-301.
doi: 10.1016/S0167-2789(99)00216-X. |
[32] |
I. Sunagawa and P. Bennema, Morphology of growth spirals: Theoretical and experimental, in Preparation and Properties of Solid State Materials: Vol. 7, Growth Mechanisms and Silicon Nitride, 1–129. |
[33] |
J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991,321–336. |
[34] |
S. Yazaki,
Point-extinction and geometric expansion of solutions to a crystalline motion, Hokkaido Math. J., 30 (2001), 327-357.
doi: 10.14492/hokmj/1350911957. |
















[1] |
Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865 |
[2] |
Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53 |
[3] |
Bendong Lou. Spiral rotating waves of a geodesic curvature flow on the unit sphere. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 933-942. doi: 10.3934/dcdsb.2012.17.933 |
[4] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[5] |
Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124. |
[6] |
Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307 |
[7] |
Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881 |
[8] |
Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717 |
[9] |
Mi-Ho Giga, Yoshikazu Giga, Ryo Kuroda, Yusuke Ochiai. Crystalline flow starting from a general polygon. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2027-2051. doi: 10.3934/dcds.2021182 |
[10] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic and Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109 |
[11] |
Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441 |
[12] |
Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153 |
[13] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[14] |
Lixia Yuan, Wei Zhao. On a curvature flow in a band domain with unbounded boundary slopes. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 261-283. doi: 10.3934/dcds.2021115 |
[15] |
Tomáš Roubíček. On certain convex compactifications for relaxation in evolution problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 467-482. doi: 10.3934/dcdss.2011.4.467 |
[16] |
Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225 |
[17] |
Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151 |
[18] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[19] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[20] |
Yannan Liu, Hongjie Ju. Non-collapsing for a fully nonlinear inverse curvature flow. Communications on Pure and Applied Analysis, 2017, 16 (3) : 945-952. doi: 10.3934/cpaa.2017045 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]