\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip

  • * Corresponding author: Takeshi Ohtsuka

    * Corresponding author: Takeshi Ohtsuka
Abstract Full Text(HTML) Figure(16) Related Papers Cited by
  • We present a new ODE approach for an evolving polygonal spiral by the crystalline eikonal-curvature flow with a fixed center. In this approach, we introduce a mechanism of new facet generation at the center of the growing spiral, which is based on the theory of two-dimensional nucleation. We prove the existence, uniqueness and intersection free of solution to our formulation globally-in-time. In the proof of the existence we also prove that new facets are generated repeatedly in time. The comparison result of the normal velocity between inner and outer facets with the same normal direction leads intersection-free result. The normal velocities are positive after the next new facet is generated, so that the center is always behind of the moving facets.

    Mathematics Subject Classification: Primary: 34A34, 53C44; Secondary: 53A04.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Evolution of polygonal spiral. In the above figures, $ L_j $ and $ y_j $ denote the facets and vertices of the polygonal spiral, respectively

    Figure 2.  Notations to the Wulff shape $ \mathcal{W}_\gamma $

    Figure 3.  Example of positive convex (left) and positive concave(right) spiral for hexagonal $ \mathcal{W}_\gamma $

    Figure 4.  Evolution of polygonal curves. The angle of the corners with a round curve is $ \theta_{j+1} - \theta_j $

    Figure 5.  Examples of self-intersection between $ \Lambda_i (t)$ $ (solid line) and $ \Lambda_j (t) $ (dashed line). Note that dots means $ y_i (t) $ or $ y_j (t) $, which is a vertex belongs to $ \Lambda_i (t) $ or $ \Lambda_j (t) $, respectively

    Figure 6.  The case of facet-vertex intersection with $ \Lambda_j (\bar{t}) \subset \mathcal{O}_i (\bar{t}) $ (we omit the notation of $ \bar{t} $ in the figure). In the situation of the figure (b), the origin should be on the gray regions including the boundary lines by Corollary 3.4. Thus, the kind of touch like as (b) never occur

    Figure 7.  The case of facet-vertex intersection with $ \Lambda_j \subset \mathcal{I}_i (\bar{t}) $. The facet $ \Lambda_{j+1} $ never can be located as the dashed line in (b)

    Figure 8.  Location of $ \Lambda_i (\bar{t}) $, $ \Lambda_{i+1} (\bar{t}) $, $ \Lambda_j (\bar{t}) $ and $ \Lambda_{j+1} (\bar{t}) $ under the vertex-vertex intersection between $ \Lambda_i (\bar{t}) $ and $ \Lambda_j (\bar{t}) $. The above figures illustrate the case when (a)$ \varphi_i < \varphi_j < \varphi_i + \pi $, (b)$ \varphi_i + \pi < \varphi_j < \varphi_{i+1} + \pi $, and (c)$ \varphi_{i+1} + \pi < \varphi_j < \varphi_i + 2 \pi $. The gray regions are where $ \Lambda_{j+1} (\bar{t}) $ can be located, and gray shaded regions are where the cross type intersection appears between $ \Lambda_i (\bar{t}) \cup \Lambda_{i+1} (\bar{t}) $ and $ \Lambda_j (\bar{t}) \cup \Lambda_{j+1} (\bar{t}) $ although $ \Lambda_{j+1} (\bar{t}) $ seems to be located from the angle condition

    Figure 9.  The case of facet-facet intersection with $ \Lambda_i (\bar{t}) \not\subset \Lambda_j (\bar{t}) $ and $ \Lambda_i (\bar{t}) \not\supset \Lambda_j (\bar{t}) $

    Figure 10.  Evolution of a polygonal spiral with a triangle Wulff shape. The figures illustrate the shape of a spiral at $ t = 0.0, 0.1, 0.5, 1.0 $ from top left to bottom right

    Figure 11.  Comparison of the profiles of spirals at $ t = 1 $ with respect to different anisotropic mobilities under the same $ \mathcal{W}_\gamma $

    Figure 12.  Comparison of profiles between our ODE system(top) and level set method(bottom) for a square spiral at $ t = 0 $(left), $ t = 1 $(center) and $ t = 2 $(right)

    Figure 13.  Comparison of profiles between our ODE system(top) and level set method(bottom) for a diagonal spiral at $ t = 0 $(left), $ t = 1 $(center) and $ t = 2 $(right)

    Figure 14.  Examination of the orientation of $ L_{k+1} $ with hexagonal $ \mathcal{W}_\gamma $ when $ d_k (T_{k+1}) = \ell_{k}/U $ and $ d_{k-1} (T_{k+1}) < \ell_{k-1} / U $

    Figure 15.  The situation when (39) does not hold in Case (i)

    Figure 16.  The situation case(a) with $ \varphi_{j+1} \in (\varphi_{i+1} , \varphi_i + \pi) $

  • [1] F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.  doi: 10.4310/jdg/1214457030.
    [2] F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.
    [3] S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.  doi: 10.1007/BF01041068.
    [4] W. K. BurtonN. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 243 (1951), 299-358.  doi: 10.1098/rsta.1951.0006.
    [5] R. E. Caflisch, Growth, structure and pattern formation for thin films, J. Sci. Comput., 37 (2008), 3-17.  doi: 10.1007/s10915-008-9206-8.
    [6] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flow, to appear in J. Amer. Math. Soc., arXiv: 1702.03094.
    [7] A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.  doi: 10.4171/IFB/97.
    [8] A. ChambolleM. Morini and M. Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.  doi: 10.1002/cpa.21668.
    [9] B. EngquistA.-K. Tornberg and R. Tsai, Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.  doi: 10.1016/j.jcp.2004.09.018.
    [10] N. ForcadelC. Imbert and R. Monneau, Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces Free Bound., 14 (2012), 365-400.  doi: 10.4171/IFB/285.
    [11] M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.  doi: 10.1007/s002050100154.
    [12] Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99, Birkhäuser Verlag, Basel, 2006.
    [13] Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631-698. 
    [14] Y. Giga and N. Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow, Comm. Pure Appl. Math., 71 (2018), 1461-1491.  doi: 10.1002/cpa.21752.
    [15] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.  doi: 10.4310/jdg/1214441371.
    [16] M. E. GurtinThermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993. 
    [17] H. ImaiN. Ishimura and T. Ushijima, Motion of spirals by crystalline curvature, M2AN Math. Model. Numer. Anal., 33 (1999), 797-806.  doi: 10.1051/m2an:1999164.
    [18] T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena, Japan J. Indust. Appl. Math., 25 (2008), 233-253.  doi: 10.1007/BF03167521.
    [19] T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity, Discrete Contin. Dyn. Syst., 2011,717–726. doi: 10.3934/proc.2011.2011.717.
    [20] T. Ishiwata, On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 865-873.  doi: 10.3934/dcdss.2011.4.865.
    [21] T. Ishiwata, Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.  doi: 10.3934/dcdss.2014.7.53.
    [22] T. IshiwataT. K. UshijimaH. Yagisita and S. Yazaki, Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 151-154.  doi: 10.3792/pjaa.80.151.
    [23] A. Karma and M. Plapp, Spiral surface growth without desorption, Phys. Rev. Lett., 81 (1998), 4444-4447.  doi: 10.1103/PhysRevLett.81.4444.
    [24] R. Kobayashi, A brief introduction to phase field method, AIP Conf. Proc., 1270 (2010), 282-291.  doi: 10.1063/1.3476232.
    [25] H. Miura and R. Kobayashi, Phase-field modeling of step dynamics on growing crystal surface: Direct integration of growth units to step front, Crystal Growth & Design, 15 (2015), 2165-2175.  doi: 10.1021/cg501806d.
    [26] A. ObermanS. OsherR. Takei and R. Tsai, Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.  doi: 10.4310/CMS.2011.v9.n3.a1.
    [27] T. OhtsukaY.-H. Tsai and Y. Giga, A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.  doi: 10.1007/s10915-014-9877-2.
    [28] T. Ohtsuka, A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248. 
    [29] T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317. 
    [30] A. G. ShtukenbergZ. ZhuZ. AnM. BhandariP. SongB. Kahr and M. D. Ward, Illusory spirals and loops in crystal growth, Proc. Natl. Acad. Sci. USA, 110 (2013), 17195-17198.  doi: 10.1073/pnas.1311637110.
    [31] P. Smereka, Spiral crystal growth, Physica D. Nonlinear Phenomena, 138 (2000), 282-301.  doi: 10.1016/S0167-2789(99)00216-X.
    [32] I. Sunagawa and P. Bennema, Morphology of growth spirals: Theoretical and experimental, in Preparation and Properties of Solid State Materials: Vol. 7, Growth Mechanisms and Silicon Nitride, 1–129.
    [33] J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991,321–336.
    [34] S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion, Hokkaido Math. J., 30 (2001), 327-357.  doi: 10.14492/hokmj/1350911957.
  • 加载中

Figures(16)

SHARE

Article Metrics

HTML views(444) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return