We present a new ODE approach for an evolving polygonal spiral by the crystalline eikonal-curvature flow with a fixed center. In this approach, we introduce a mechanism of new facet generation at the center of the growing spiral, which is based on the theory of two-dimensional nucleation. We prove the existence, uniqueness and intersection free of solution to our formulation globally-in-time. In the proof of the existence we also prove that new facets are generated repeatedly in time. The comparison result of the normal velocity between inner and outer facets with the same normal direction leads intersection-free result. The normal velocities are positive after the next new facet is generated, so that the center is always behind of the moving facets.
Citation: |
Figure 6.
The case of facet-vertex intersection with
Figure 8.
Location of
[1] |
F. Almgren and J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
doi: 10.4310/jdg/1214457030.![]() ![]() ![]() |
[2] |
F. Almgren, J. E. Taylor and L. Wang, Curvature-driven flows: a variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020.![]() ![]() ![]() |
[3] |
S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure. Ⅱ. Evolution of an isothermal interface, Arch. Rational Mech. Anal., 108 (1989), 323-391.
doi: 10.1007/BF01041068.![]() ![]() ![]() |
[4] |
W. K. Burton, N. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences, 243 (1951), 299-358.
doi: 10.1098/rsta.1951.0006.![]() ![]() ![]() |
[5] |
R. E. Caflisch, Growth, structure and pattern formation for thin films, J. Sci. Comput., 37 (2008), 3-17.
doi: 10.1007/s10915-008-9206-8.![]() ![]() ![]() |
[6] |
A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flow, to appear in J. Amer. Math. Soc., arXiv: 1702.03094.
![]() |
[7] |
A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
doi: 10.4171/IFB/97.![]() ![]() ![]() |
[8] |
A. Chambolle, M. Morini and M. Ponsiglione, Existence and uniqueness for a crystalline mean curvature flow, Comm. Pure Appl. Math., 70 (2017), 1084-1114.
doi: 10.1002/cpa.21668.![]() ![]() ![]() |
[9] |
B. Engquist, A.-K. Tornberg and R. Tsai, Discretization of Dirac delta functions in level set methods, J. Comput. Phys., 207 (2005), 28-51.
doi: 10.1016/j.jcp.2004.09.018.![]() ![]() ![]() |
[10] |
N. Forcadel, C. Imbert and R. Monneau, Uniqueness and existence of spirals moving by forced mean curvature motion, Interfaces Free Bound., 14 (2012), 365-400.
doi: 10.4171/IFB/285.![]() ![]() ![]() |
[11] |
M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.
doi: 10.1007/s002050100154.![]() ![]() ![]() |
[12] |
Y. Giga, Surface Evolution Equations: A Level Set Approach, Monographs in Mathematics, 99, Birkhäuser Verlag, Basel, 2006.
![]() ![]() |
[13] |
Y. Giga and N. Požár, A level set crystalline mean curvature flow of surfaces, Adv. Differential Equations, 21 (2016), 631-698.
![]() ![]() |
[14] |
Y. Giga and N. Požár, Approximation of general facets by regular facets with respect to anisotropic total variation energies and its application to crystalline mean curvature flow, Comm. Pure Appl. Math., 71 (2018), 1461-1491.
doi: 10.1002/cpa.21752.![]() ![]() ![]() |
[15] |
M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26 (1987), 285-314.
doi: 10.4310/jdg/1214441371.![]() ![]() ![]() |
[16] |
M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.
![]() ![]() |
[17] |
H. Imai, N. Ishimura and T. Ushijima, Motion of spirals by crystalline curvature, M2AN Math. Model. Numer. Anal., 33 (1999), 797-806.
doi: 10.1051/m2an:1999164.![]() ![]() ![]() |
[18] |
T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena, Japan J. Indust. Appl. Math., 25 (2008), 233-253.
doi: 10.1007/BF03167521.![]() ![]() ![]() |
[19] |
T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity, Discrete Contin. Dyn. Syst., 2011,717–726.
doi: 10.3934/proc.2011.2011.717.![]() ![]() ![]() |
[20] |
T. Ishiwata, On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 865-873.
doi: 10.3934/dcdss.2011.4.865.![]() ![]() ![]() |
[21] |
T. Ishiwata, Crystalline motion of spiral-shaped polygonal curves with a tip motion, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 53-62.
doi: 10.3934/dcdss.2014.7.53.![]() ![]() ![]() |
[22] |
T. Ishiwata, T. K. Ushijima, H. Yagisita and S. Yazaki, Two examples of nonconvex self-similar solution curves for a crystalline curvature flow, Proc. Japan Acad. Ser. A Math. Sci., 80 (2004), 151-154.
doi: 10.3792/pjaa.80.151.![]() ![]() ![]() |
[23] |
A. Karma and M. Plapp, Spiral surface growth without desorption, Phys. Rev. Lett., 81 (1998), 4444-4447.
doi: 10.1103/PhysRevLett.81.4444.![]() ![]() |
[24] |
R. Kobayashi, A brief introduction to phase field method, AIP Conf. Proc., 1270 (2010), 282-291.
doi: 10.1063/1.3476232.![]() ![]() |
[25] |
H. Miura and R. Kobayashi, Phase-field modeling of step dynamics on growing crystal surface: Direct integration of growth units to step front, Crystal Growth & Design, 15 (2015), 2165-2175.
doi: 10.1021/cg501806d.![]() ![]() |
[26] |
A. Oberman, S. Osher, R. Takei and R. Tsai, Numerical methods for anisotropic mean curvature flow based on a discrete time variational formulation, Commun. Math. Sci., 9 (2011), 637-662.
doi: 10.4310/CMS.2011.v9.n3.a1.![]() ![]() ![]() |
[27] |
T. Ohtsuka, Y.-H. Tsai and Y. Giga, A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces, Journal of Scientific Computing, 62 (2015), 831-874.
doi: 10.1007/s10915-014-9877-2.![]() ![]() ![]() |
[28] |
T. Ohtsuka, A level set method for spiral crystal growth, Advances in Mathematical Sciences and Applications, 13 (2003), 225-248.
![]() ![]() |
[29] |
T. Ohtsuka, Minimizing movement approach for spirals evolving by crystalline curvature using level set functions, Oberwolfach Reports, 14 (2017), 314-317.
![]() |
[30] |
A. G. Shtukenberg, Z. Zhu, Z. An, M. Bhandari, P. Song, B. Kahr and M. D. Ward, Illusory spirals and loops in crystal growth, Proc. Natl. Acad. Sci. USA, 110 (2013), 17195-17198.
doi: 10.1073/pnas.1311637110.![]() ![]() |
[31] |
P. Smereka, Spiral crystal growth, Physica D. Nonlinear Phenomena, 138 (2000), 282-301.
doi: 10.1016/S0167-2789(99)00216-X.![]() ![]() ![]() |
[32] |
I. Sunagawa and P. Bennema, Morphology of growth spirals: Theoretical and experimental, in Preparation and Properties of Solid State Materials: Vol. 7, Growth Mechanisms and Silicon Nitride, 1–129.
![]() |
[33] |
J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991,321–336.
![]() ![]() |
[34] |
S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion, Hokkaido Math. J., 30 (2001), 327-357.
doi: 10.14492/hokmj/1350911957.![]() ![]() ![]() |