• Previous Article
    Numerical solution of partial differential equations with stochastic Neumann boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity
October  2019, 24(10): 5317-5336. doi: 10.3934/dcdsb.2019060

Blowup rate of solutions of a degenerate nonlinear parabolic equation

Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan

Received  May 2018 Revised  September 2018 Published  April 2019

We study a nonlinear parabolic equation arising from heat combustion and plane curve evolution problems. Suppose that a solution satisfies a symmetry condition and blows up of type Ⅱ. We give an upper bound and a lower bound for the blowup rate of the solution. The lower bound obtained here is probably optimal.

Citation: Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060
References:
[1]

K. Anada and T. Ishiwata, Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.  doi: 10.1016/j.jde.2016.09.023.  Google Scholar

[2]

B. Andrews, Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.  doi: 10.1007/s005260050111.  Google Scholar

[3]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.  doi: 10.4310/jdg/1214446558.  Google Scholar

[5]

S. Angenent and J. Velazquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.  doi: 10.1215/S0012-7094-95-07704-7.  Google Scholar

[6]

A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.  doi: 10.1007/BF00251413.  Google Scholar

[7]

T. C. LinC. C. Poon and D. H Tsai, Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.  doi: 10.1007/s00526-008-0180-7.  Google Scholar

[8]

Y. C. LinC. C. Poon and D. H. Tsai, Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.  doi: 10.1090/S0002-9947-2012-05611-X.  Google Scholar

[9]

C. C. Poon and D. H Tsai, Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.  doi: 10.4310/CAG.2010.v18.n1.a2.  Google Scholar

[10]

D. H. Tsai, Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.   Google Scholar

[11]

J. Urbas, Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.  doi: 10.4310/AJM.1999.v3.n3.a4.  Google Scholar

[12]

M. Winkler, Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.  doi: 10.1016/S0022-0396(03)00127-X.  Google Scholar

[13]

M. Winkler, Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.  doi: 10.1512/iumj.2004.53.2451.  Google Scholar

show all references

References:
[1]

K. Anada and T. Ishiwata, Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.  doi: 10.1016/j.jde.2016.09.023.  Google Scholar

[2]

B. Andrews, Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.  doi: 10.1007/s005260050111.  Google Scholar

[3]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.  doi: 10.4310/jdg/1214446558.  Google Scholar

[5]

S. Angenent and J. Velazquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.  doi: 10.1215/S0012-7094-95-07704-7.  Google Scholar

[6]

A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.  doi: 10.1007/BF00251413.  Google Scholar

[7]

T. C. LinC. C. Poon and D. H Tsai, Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.  doi: 10.1007/s00526-008-0180-7.  Google Scholar

[8]

Y. C. LinC. C. Poon and D. H. Tsai, Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.  doi: 10.1090/S0002-9947-2012-05611-X.  Google Scholar

[9]

C. C. Poon and D. H Tsai, Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.  doi: 10.4310/CAG.2010.v18.n1.a2.  Google Scholar

[10]

D. H. Tsai, Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.   Google Scholar

[11]

J. Urbas, Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.  doi: 10.4310/AJM.1999.v3.n3.a4.  Google Scholar

[12]

M. Winkler, Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.  doi: 10.1016/S0022-0396(03)00127-X.  Google Scholar

[13]

M. Winkler, Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.  doi: 10.1512/iumj.2004.53.2451.  Google Scholar

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[18]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (138)
  • HTML views (354)
  • Cited by (0)

Other articles
by authors

[Back to Top]