-
Previous Article
Numerical solution of partial differential equations with stochastic Neumann boundary conditions
- DCDS-B Home
- This Issue
-
Next Article
$ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity
Blowup rate of solutions of a degenerate nonlinear parabolic equation
Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan |
We study a nonlinear parabolic equation arising from heat combustion and plane curve evolution problems. Suppose that a solution satisfies a symmetry condition and blows up of type Ⅱ. We give an upper bound and a lower bound for the blowup rate of the solution. The lower bound obtained here is probably optimal.
References:
[1] |
K. Anada and T. Ishiwata,
Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.
doi: 10.1016/j.jde.2016.09.023. |
[2] |
B. Andrews,
Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.
doi: 10.1007/s005260050111. |
[3] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[4] |
S. Angenent,
On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.
doi: 10.4310/jdg/1214446558. |
[5] |
S. Angenent and J. Velazquez,
Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.
doi: 10.1215/S0012-7094-95-07704-7. |
[6] |
A. Friedman and B. McLeod,
Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.
doi: 10.1007/BF00251413. |
[7] |
T. C. Lin, C. C. Poon and D. H Tsai,
Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.
doi: 10.1007/s00526-008-0180-7. |
[8] |
Y. C. Lin, C. C. Poon and D. H. Tsai,
Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.
doi: 10.1090/S0002-9947-2012-05611-X. |
[9] |
C. C. Poon and D. H Tsai,
Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.
doi: 10.4310/CAG.2010.v18.n1.a2. |
[10] |
D. H. Tsai,
Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.
|
[11] |
J. Urbas,
Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.
doi: 10.4310/AJM.1999.v3.n3.a4. |
[12] |
M. Winkler,
Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.
doi: 10.1016/S0022-0396(03)00127-X. |
[13] |
M. Winkler,
Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.
doi: 10.1512/iumj.2004.53.2451. |
show all references
References:
[1] |
K. Anada and T. Ishiwata,
Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.
doi: 10.1016/j.jde.2016.09.023. |
[2] |
B. Andrews,
Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.
doi: 10.1007/s005260050111. |
[3] |
S. Angenent,
The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.
doi: 10.1515/crll.1988.390.79. |
[4] |
S. Angenent,
On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.
doi: 10.4310/jdg/1214446558. |
[5] |
S. Angenent and J. Velazquez,
Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.
doi: 10.1215/S0012-7094-95-07704-7. |
[6] |
A. Friedman and B. McLeod,
Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.
doi: 10.1007/BF00251413. |
[7] |
T. C. Lin, C. C. Poon and D. H Tsai,
Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.
doi: 10.1007/s00526-008-0180-7. |
[8] |
Y. C. Lin, C. C. Poon and D. H. Tsai,
Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.
doi: 10.1090/S0002-9947-2012-05611-X. |
[9] |
C. C. Poon and D. H Tsai,
Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.
doi: 10.4310/CAG.2010.v18.n1.a2. |
[10] |
D. H. Tsai,
Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.
|
[11] |
J. Urbas,
Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.
doi: 10.4310/AJM.1999.v3.n3.a4. |
[12] |
M. Winkler,
Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.
doi: 10.1016/S0022-0396(03)00127-X. |
[13] |
M. Winkler,
Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.
doi: 10.1512/iumj.2004.53.2451. |
[1] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[2] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[3] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[4] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[5] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
[6] |
Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037 |
[7] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[8] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[9] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[10] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[11] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[12] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[13] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[14] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[15] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[16] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[17] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[18] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[19] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[20] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]