• Previous Article
    Numerical solution of partial differential equations with stochastic Neumann boundary conditions
  • DCDS-B Home
  • This Issue
  • Next Article
    $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity
October  2019, 24(10): 5317-5336. doi: 10.3934/dcdsb.2019060

Blowup rate of solutions of a degenerate nonlinear parabolic equation

Department of Mathematics, National Chung Cheng University, Min-Hsiung, Chia-Yi 621, Taiwan

Received  May 2018 Revised  September 2018 Published  April 2019

We study a nonlinear parabolic equation arising from heat combustion and plane curve evolution problems. Suppose that a solution satisfies a symmetry condition and blows up of type Ⅱ. We give an upper bound and a lower bound for the blowup rate of the solution. The lower bound obtained here is probably optimal.

Citation: Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060
References:
[1]

K. Anada and T. Ishiwata, Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.  doi: 10.1016/j.jde.2016.09.023.  Google Scholar

[2]

B. Andrews, Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.  doi: 10.1007/s005260050111.  Google Scholar

[3]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.  doi: 10.4310/jdg/1214446558.  Google Scholar

[5]

S. Angenent and J. Velazquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.  doi: 10.1215/S0012-7094-95-07704-7.  Google Scholar

[6]

A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.  doi: 10.1007/BF00251413.  Google Scholar

[7]

T. C. LinC. C. Poon and D. H Tsai, Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.  doi: 10.1007/s00526-008-0180-7.  Google Scholar

[8]

Y. C. LinC. C. Poon and D. H. Tsai, Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.  doi: 10.1090/S0002-9947-2012-05611-X.  Google Scholar

[9]

C. C. Poon and D. H Tsai, Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.  doi: 10.4310/CAG.2010.v18.n1.a2.  Google Scholar

[10]

D. H. Tsai, Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.   Google Scholar

[11]

J. Urbas, Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.  doi: 10.4310/AJM.1999.v3.n3.a4.  Google Scholar

[12]

M. Winkler, Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.  doi: 10.1016/S0022-0396(03)00127-X.  Google Scholar

[13]

M. Winkler, Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.  doi: 10.1512/iumj.2004.53.2451.  Google Scholar

show all references

References:
[1]

K. Anada and T. Ishiwata, Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation, J. Differential Equations, 262 (2017), 181-271.  doi: 10.1016/j.jde.2016.09.023.  Google Scholar

[2]

B. Andrews, Evolving convex curves, Calc. Var. & P.D.E., 7 (1998), 315-371.  doi: 10.1007/s005260050111.  Google Scholar

[3]

S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988), 79-96.  doi: 10.1515/crll.1988.390.79.  Google Scholar

[4]

S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601-633.  doi: 10.4310/jdg/1214446558.  Google Scholar

[5]

S. Angenent and J. Velazquez, Asymptotic shape of cusp singularities in curve shortening, Duke Math. Journal, 77 (1995), 71-110.  doi: 10.1215/S0012-7094-95-07704-7.  Google Scholar

[6]

A. Friedman and B. McLeod, Blow-up of solutions of nonlinear degenerate parabolic equations, Arch. Rational Mech. Anal., 96 (1986), 55-80.  doi: 10.1007/BF00251413.  Google Scholar

[7]

T. C. LinC. C. Poon and D. H Tsai, Expanding convex immersed closed plane curves, Calc. Var. & P.D.E., 34 (2009), 153-178.  doi: 10.1007/s00526-008-0180-7.  Google Scholar

[8]

Y. C. LinC. C. Poon and D. H. Tsai, Contracting convex immersed closed plane curves with slow speed of curvature, Transactions of AMS, 364 (2012), 5735-5763.  doi: 10.1090/S0002-9947-2012-05611-X.  Google Scholar

[9]

C. C. Poon and D. H Tsai, Contracting convex immersed closed plane curves with fast speed of curvature, Comm. Anal. Geom., 18 (2010), 23-75.  doi: 10.4310/CAG.2010.v18.n1.a2.  Google Scholar

[10]

D. H. Tsai, Blowup behavior of an equation arising from plane curves expansion, Diff. and Integ. Eq., 17 (2005), 849-872.   Google Scholar

[11]

J. Urbas, Convex curves moving homotheticallt by negative powers of their curvature, Asian J. Math., 3 (1999), 635-656.  doi: 10.4310/AJM.1999.v3.n3.a4.  Google Scholar

[12]

M. Winkler, Blow-up of solutions to a degenerate parabolic equation not in divergence form, J. Differential Equation, 192 (2003), 445-474.  doi: 10.1016/S0022-0396(03)00127-X.  Google Scholar

[13]

M. Winkler, Blow-up in a degenerate parabolic equation, Indiana Univ. Math. Journal, 53 (2004), 1415-1442.  doi: 10.1512/iumj.2004.53.2451.  Google Scholar

[1]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[2]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[3]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[4]

K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038

[5]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[6]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[11]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[12]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[13]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[14]

Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041

[15]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[17]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[18]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[19]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[20]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (153)
  • HTML views (381)
  • Cited by (0)

Other articles
by authors

[Back to Top]