• Previous Article
    Emergence of large densities and simultaneous blow-up in a two-species chemotaxis system with competitive kinetics
  • DCDS-B Home
  • This Issue
  • Next Article
    Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux
October  2019, 24(10): 5437-5460. doi: 10.3934/dcdsb.2019065

Effects of the noise level on nonlinear stochastic fractional heat equations

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

Received  June 2018 Published  April 2019

We consider the stochastic fractional heat equation $\partial_{t}u=\triangle^{\alpha/2}u+\lambda\sigma(u)\dot{w}$ on $[0,L]$ with Dirichlet boundary conditions, where $\dot{w}$ denotes the space-time white noise. For any $\lambda>0$, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ grows at most exponentially. If $\lambda$ is small, we prove that the $p$th moment of $\sup_{x\in [0,L]}|u(t,x)|$ is exponentially stable. At last, we obtain the noise excitation index of $p$th energy of $u(t,x)$ is $\frac{2\alpha}{\alpha-1}$.

Citation: Kexue Li. Effects of the noise level on nonlinear stochastic fractional heat equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5437-5460. doi: 10.3934/dcdsb.2019065
References:
[1]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[2]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[3]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.  doi: 10.1007/s00220-006-0178-y.  Google Scholar

[4]

Z.-Q. ChenP. Kim and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.  doi: 10.4171/JEMS/231.  Google Scholar

[5]

Z.-Q. ChenM. M. Meerschaert and E. Nane, Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.  doi: 10.1016/j.jmaa.2012.04.032.  Google Scholar

[6]

M. Foondun and M. Joseph, Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.  doi: 10.1016/j.spa.2014.04.015.  Google Scholar

[7]

M. Foondun and D. Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.  doi: 10.1214/EJP.v14-614.  Google Scholar

[8]

M. Foondun and E. Nualart, On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.   Google Scholar

[9]

M. FoondunK. Tian and W. Liu, On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.  doi: 10.1007/s10959-016-0684-6.  Google Scholar

[10]

P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010. doi: 10.1017/CBO9780511845079.  Google Scholar

[11]

A. M. GarsiaE. Rodemich and H. Rumsey Jr, A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.  doi: 10.1512/iumj.1971.20.20046.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981.  Google Scholar

[13]

T. Jakubowski and G. Serafin, Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.  doi: 10.1016/j.na.2015.10.016.  Google Scholar

[14]

D. Khoshnevisan and K. Kim, Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.  doi: 10.1090/S0002-9939-2015-12517-8.  Google Scholar

[15]

D. Khoshnevisan and K. Kim, Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.  doi: 10.1214/14-AOP925.  Google Scholar

[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.   Google Scholar
[18]

J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439. doi: 10.1007/BFb0074920.  Google Scholar

[19]

F. Wang and X. Zhang, Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.  doi: 10.1515/forum-2012-0074.  Google Scholar

[20]

B. Xie, Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.  doi: 10.1016/j.spa.2015.10.014.  Google Scholar

show all references

References:
[1]

E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D thesis, Eindhoven University of Technology, 2001.  Google Scholar

[2]

K. BogdanT. Grzywny and M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab., 38 (2010), 1901-1923.  doi: 10.1214/10-AOP532.  Google Scholar

[3]

K. Bogdan and T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., 271 (2007), 179-198.  doi: 10.1007/s00220-006-0178-y.  Google Scholar

[4]

Z.-Q. ChenP. Kim and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc., 12 (2010), 1307-1329.  doi: 10.4171/JEMS/231.  Google Scholar

[5]

Z.-Q. ChenM. M. Meerschaert and E. Nane, Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393 (2012), 479-488.  doi: 10.1016/j.jmaa.2012.04.032.  Google Scholar

[6]

M. Foondun and M. Joseph, Remarks on non-linear noise excitability of some stochastic heat equations, Stoch. Proc. Appl., 124 (2014), 3429-3440.  doi: 10.1016/j.spa.2014.04.015.  Google Scholar

[7]

M. Foondun and D. Khoshnevisan, Intermittence and nonlinear parabolic stochastic partial differential equations, Electron. J. Probab., 14 (2009), 548-568.  doi: 10.1214/EJP.v14-614.  Google Scholar

[8]

M. Foondun and E. Nualart, On the behavior of stochastic heat equations on bounded domains, ALEA, Lat. Am. J. Probab. Math. Stat., 12 (2015), 551-571.   Google Scholar

[9]

M. FoondunK. Tian and W. Liu, On some properties of a class of fractional stochastic heat equations, J. Theor. Probab., 30 (2017), 1310-1333.  doi: 10.1007/s10959-016-0684-6.  Google Scholar

[10]

P. K. Friz and N. B. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and Applications, Cambridge University Press, Cambridge studies in advanced mathematics vol. 120, Cambridge 2010. doi: 10.1017/CBO9780511845079.  Google Scholar

[11]

A. M. GarsiaE. Rodemich and H. Rumsey Jr, A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J., 20 (1970), 565-578.  doi: 10.1512/iumj.1971.20.20046.  Google Scholar

[12]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, Berlin, 1981.  Google Scholar

[13]

T. Jakubowski and G. Serafin, Stable estimates for source solution of critical fractal Burgers equation, Nonlinear. Anal., 130 (2016), 396-407.  doi: 10.1016/j.na.2015.10.016.  Google Scholar

[14]

D. Khoshnevisan and K. Kim, Non-linear excitation and intermittency under high disorder, Proc. Amer. Math. Soc., 143 (2015), 4073-4083.  doi: 10.1090/S0002-9939-2015-12517-8.  Google Scholar

[15]

D. Khoshnevisan and K. Kim, Nonlinear Noise Excitation of intermittent stochastic pdes and the topology of LCA groups, Ann. Probab., 43 (2015), 1944-1991.  doi: 10.1214/14-AOP925.  Google Scholar

[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.   Google Scholar
[18]

J. B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., Springer, Berlin, 1180 (1986), 265–439. doi: 10.1007/BFb0074920.  Google Scholar

[19]

F. Wang and X. Zhang, Heat kernel for fractional diffusion operators with perturbations, Forum Math, 27 (2015), 973-994.  doi: 10.1515/forum-2012-0074.  Google Scholar

[20]

B. Xie, Some effects of the noise intensity upon non-linear stochastic heat equations on $[0, 1]$, Stoch. Proc. Appl., 126 (2016), 1184-1205.  doi: 10.1016/j.spa.2015.10.014.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[4]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[10]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[11]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[14]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[15]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[16]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[17]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[18]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (135)
  • HTML views (347)
  • Cited by (0)

Other articles
by authors

[Back to Top]