October  2019, 24(10): 5503-5522. doi: 10.3934/dcdsb.2019068

Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition

1. 

School of Mathematical Sciences, Peking University, Beijing 100871, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

* Corresponding author: Lan Zeng

Received  June 2018 Revised  October 2018 Published  April 2019

Fund Project: The second author is supported by Science Challenge Project, No.TZ2016002.

In this paper, we consider the low Mach number limit of the full compressible MHD equations in a 3-D bounded domain with Dirichlet boundary condition for velocity field, Neumann boundary condition for temperature and perfectly conducting boundary condition for magnetic field. First, the uniform estimates in the Mach number for the strong solutions are obtained in a short time interval, provided that the initial density and temperature are close to the constant states. Then, we prove the solutions of the full compressible MHD equations converge to the isentropic incompressible MHD equations as the Mach number tends to zero.

Citation: Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068
References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[2]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Functional Analysis, 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[3]

W. Q. CuiY. B. Ou and D. D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263-288.  doi: 10.1016/j.jmaa.2015.02.049.  Google Scholar

[4]

B. DesjardinsE. GrenierP. L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[5]

C. S. DouS. Jiang and Q. C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.  doi: 10.1007/s00033-013-0311-7.  Google Scholar

[6]

C. S. DouS. Jiang and Y. B. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379-398.  doi: 10.1016/j.jde.2014.09.017.  Google Scholar

[7]

C. S. Dou and Q. C. Ju, Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci., 12 (2014), 661-679.  doi: 10.4310/CMS.2014.v12.n4.a3.  Google Scholar

[8]

J. S. Fan, F. C. Li and G. Nakamura, Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015,387–394. doi: 10.3934/proc.2015.0387.  Google Scholar

[9]

J. S. FanH. J. Gao and B. L. Guo, Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient, Math. Methods Appl. Sci., 34 (2011), 2181-2188.  doi: 10.1002/mma.1515.  Google Scholar

[10]

E. Feireisl and A. Novotny, Inviscid incompressible limits of the full Navier-Stokes-Fourier system, Comm. Math. Phys., 321 (2013), 605-628.  doi: 10.1007/s00220-013-1691-4.  Google Scholar

[11]

E. Feireisl and A. Novotny, The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 186 (2007), 77-107.  doi: 10.1007/s00205-007-0066-4.  Google Scholar

[12]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[13]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. Ⅰ. Linearized Steady Problems, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[14]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAMJ. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[15]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.  doi: 10.1137/100785168.  Google Scholar

[16]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[17]

S. JiangQ. C. Ju and F. C. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.  doi: 10.1088/0951-7715/25/5/1351.  Google Scholar

[18]

S. JiangQ. C. JuF. C. Li and Z. P. Xing, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[19]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.  doi: 10.1137/15M102842X.  Google Scholar

[20]

S. Jiang and Y. B. Ou, Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl., 96 (2011), 1-28.  doi: 10.1016/j.matpur.2011.01.004.  Google Scholar

[21]

F. C. LiY. M. Mu and D. H. Wang, Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 10 (2017), 741-784.  doi: 10.3934/krm.2017030.  Google Scholar

[22]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[23]

Y. P. Li and W. A. Yong, The Zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chin. Ann. Math. Ser. B, 36 (2015), 1043-1054.  doi: 10.1007/s11401-015-0918-4.  Google Scholar

[24]

J. G. Liu and R. Pego, Stable discretization of magnetohydrodynamics in bounded domains, Commun. Math. Sci., 8 (2010), 234-251.  doi: 10.4310/CMS.2010.v8.n1.a12.  Google Scholar

[25]

G. Métivier and S. Schchet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.  doi: 10.1007/PL00004241.  Google Scholar

[26]

Y. B. Ou, Low Mach number limit of viscous polytropic fluid flows, J. Differential Equations, 251 (2011), 2037-2065.  doi: 10.1016/j.jde.2011.07.009.  Google Scholar

[27]

D. D. Ren and Y. B. Ou, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition, Z. Angew. Math. Phys., 67 (2016), Art. 103, 27 pp. doi: 10.1007/s00033-016-0698-z.  Google Scholar

[28]

W. Rusin, On the inviscid limit for the solutions of two-dimensional incompressible Navier-Stokes equations with slip-type boundary conditions, Nonlinearity, 19 (2006), 1349-1363.  doi: 10.1088/0951-7715/19/6/007.  Google Scholar

[29]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607-647.   Google Scholar

[30]

A. Valli and W. M. Zajaczkowski, Navier-stokes for compressible fluid: Global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), 259-296.  doi: 10.1007/BF01206939.  Google Scholar

[31]

S. Wang and Z. L. Xu, Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain, Nonlinear Anal., 105 (2014), 102-119.  doi: 10.1016/j.na.2014.01.008.  Google Scholar

[32]

Y. L. Xiao and Z. P. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

show all references

References:
[1]

T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1-73.  doi: 10.1007/s00205-005-0393-2.  Google Scholar

[2]

J. P. Bourguignon and H. Brezis, Remarks on the Euler equation, J. Functional Analysis, 15 (1974), 341-363.  doi: 10.1016/0022-1236(74)90027-5.  Google Scholar

[3]

W. Q. CuiY. B. Ou and D. D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263-288.  doi: 10.1016/j.jmaa.2015.02.049.  Google Scholar

[4]

B. DesjardinsE. GrenierP. L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl., 78 (1999), 461-471.  doi: 10.1016/S0021-7824(99)00032-X.  Google Scholar

[5]

C. S. DouS. Jiang and Q. C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661-1678.  doi: 10.1007/s00033-013-0311-7.  Google Scholar

[6]

C. S. DouS. Jiang and Y. B. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379-398.  doi: 10.1016/j.jde.2014.09.017.  Google Scholar

[7]

C. S. Dou and Q. C. Ju, Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci., 12 (2014), 661-679.  doi: 10.4310/CMS.2014.v12.n4.a3.  Google Scholar

[8]

J. S. Fan, F. C. Li and G. Nakamura, Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain, Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 2015,387–394. doi: 10.3934/proc.2015.0387.  Google Scholar

[9]

J. S. FanH. J. Gao and B. L. Guo, Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient, Math. Methods Appl. Sci., 34 (2011), 2181-2188.  doi: 10.1002/mma.1515.  Google Scholar

[10]

E. Feireisl and A. Novotny, Inviscid incompressible limits of the full Navier-Stokes-Fourier system, Comm. Math. Phys., 321 (2013), 605-628.  doi: 10.1007/s00220-013-1691-4.  Google Scholar

[11]

E. Feireisl and A. Novotny, The low Mach number limit for the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., 186 (2007), 77-107.  doi: 10.1007/s00205-007-0066-4.  Google Scholar

[12]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[13]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. Ⅰ. Linearized Steady Problems, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-5364-8.  Google Scholar

[14]

X. P. Hu and D. H. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAMJ. Math. Anal., 41 (2009), 1272-1294.  doi: 10.1137/080723983.  Google Scholar

[15]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.  doi: 10.1137/100785168.  Google Scholar

[16]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.  doi: 10.1007/s00220-010-0992-0.  Google Scholar

[17]

S. JiangQ. C. Ju and F. C. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351-1365.  doi: 10.1088/0951-7715/25/5/1351.  Google Scholar

[18]

S. JiangQ. C. JuF. C. Li and Z. P. Xing, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384-420.  doi: 10.1016/j.aim.2014.03.022.  Google Scholar

[19]

S. JiangQ. C. Ju and F. C. Li, Incompressible limit of the nonisentropic ideal magnetohydrodynamic equations, SIAM J. Math. Anal., 48 (2016), 302-319.  doi: 10.1137/15M102842X.  Google Scholar

[20]

S. Jiang and Y. B. Ou, Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains, J. Math. Pures Appl., 96 (2011), 1-28.  doi: 10.1016/j.matpur.2011.01.004.  Google Scholar

[21]

F. C. LiY. M. Mu and D. H. Wang, Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces, Kinet. Relat. Models, 10 (2017), 741-784.  doi: 10.3934/krm.2017030.  Google Scholar

[22]

Y. P. Li, Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations, J. Differential Equations, 252 (2012), 2725-2738.  doi: 10.1016/j.jde.2011.10.002.  Google Scholar

[23]

Y. P. Li and W. A. Yong, The Zero Mach number limit of the three-dimensional compressible viscous magnetohydrodynamic equations, Chin. Ann. Math. Ser. B, 36 (2015), 1043-1054.  doi: 10.1007/s11401-015-0918-4.  Google Scholar

[24]

J. G. Liu and R. Pego, Stable discretization of magnetohydrodynamics in bounded domains, Commun. Math. Sci., 8 (2010), 234-251.  doi: 10.4310/CMS.2010.v8.n1.a12.  Google Scholar

[25]

G. Métivier and S. Schchet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61-90.  doi: 10.1007/PL00004241.  Google Scholar

[26]

Y. B. Ou, Low Mach number limit of viscous polytropic fluid flows, J. Differential Equations, 251 (2011), 2037-2065.  doi: 10.1016/j.jde.2011.07.009.  Google Scholar

[27]

D. D. Ren and Y. B. Ou, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition, Z. Angew. Math. Phys., 67 (2016), Art. 103, 27 pp. doi: 10.1007/s00033-016-0698-z.  Google Scholar

[28]

W. Rusin, On the inviscid limit for the solutions of two-dimensional incompressible Navier-Stokes equations with slip-type boundary conditions, Nonlinearity, 19 (2006), 1349-1363.  doi: 10.1088/0951-7715/19/6/007.  Google Scholar

[29]

A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 10 (1983), 607-647.   Google Scholar

[30]

A. Valli and W. M. Zajaczkowski, Navier-stokes for compressible fluid: Global existence and qualitative properties of the solutions in the general case, Commun. Math. Phys., 103 (1986), 259-296.  doi: 10.1007/BF01206939.  Google Scholar

[31]

S. Wang and Z. L. Xu, Low Mach number limit of non-isentropic magnetohydrodynamic equations in a bounded domain, Nonlinear Anal., 105 (2014), 102-119.  doi: 10.1016/j.na.2014.01.008.  Google Scholar

[32]

Y. L. Xiao and Z. P. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.  doi: 10.1002/cpa.20187.  Google Scholar

[1]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[4]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[5]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[6]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[7]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[8]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[9]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[10]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[11]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[12]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[13]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[14]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[15]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[16]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[17]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[18]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[19]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[20]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (98)
  • HTML views (391)
  • Cited by (0)

Other articles
by authors

[Back to Top]