
-
Previous Article
Existence and approximation of strong solutions of SDEs with fractional diffusion coefficients
- DCDS-B Home
- This Issue
-
Next Article
Fully decoupled schemes for the coupled Schrödinger-KdV system
Maintaining gene expression levels by positive feedback in burst size in the presence of infinitesimal delay
Department of Applied Mathematics and Statistics, Comenius University, Bratislava 842 48, Slovakia |
Synthesis of individual molecules in the expression of genes often occurs in bursts of multiple copies. Gene regulatory feedback can affect the frequency with which these bursts occur or their size. Whereas frequency regulation has traditionally received more attention, we focus specifically on the regulation of burst size. It turns out that there are (at least) two alternative formulations of feedback in burst size. In the first, newly produced molecules immediately partake in feedback, even within the same burst. In the second, there is no within-burst regulation due to what we call infinitesimal delay. We describe both alternatives using a minimalistic Markovian drift-jump framework combining discrete and continuous dynamics. We derive detailed analytic results and efficient simulation algorithms for positive non-cooperative autoregulation (whether infinitesimally delayed or not). We show that at steady state both alternatives lead to a gamma distribution of protein level. The steady-state distribution becomes available only after a transcritical bifurcation point is passed. Interestingly, the onset of the bifurcation is postponed by the inclusion of infinitesimal delay.
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D.C., 1972. |
[2] |
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Garland Science New York, 2002. |
[3] |
U. Alon,
An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC, 2007. |
[4] |
M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of hes1: Discrete stochastic delay modelling and simulation, PLoS Comput. Biol., 2 (2006), e117. |
[5] |
P. Bokes and A. Singh,
Gene expression noise is affected differentially by feedback in burst frequency and burst size, J. Math. Biol., 74 (2017), 1483-1509.
doi: 10.1007/s00285-016-1059-4. |
[6] |
P. Bokes, Y. T. Lin and A. Singh,
High cooperativity in negative feedback can amplify noisy gene expression, B. Math. Biol., 80 (2018), 1871-1899.
doi: 10.1007/s11538-018-0438-y. |
[7] |
P. Bokes, J. R. King, A. T. A. Wood and M. Loose,
Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression, B. Math. Biol., 75 (2013), 351-371.
doi: 10.1007/s11538-013-9811-z. |
[8] |
L. Cai, N. Friedman and X. S. Xie,
Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), 358-362.
|
[9] |
A. Crudu, A. Debussche, A. Muller and O. Radulescu, others, Convergence of stochastic gene networks to hybrid piecewise deterministic processes, Ann. Appl. Probab., 22 (2012), 1822Ƀ1859.
doi: 10.1214/11-AAP814. |
[10] |
P. Czuppon and P. Pfaffelhuber,
Limits of noise for autoregulated gene expression, J. Math. Biol., 77 (2018), 1153-1191.
doi: 10.1007/s00285-018-1248-4. |
[11] |
R. D. Dar, B. S. Razooky, A. Singh, T. V. Trimeloni, J. M. McCollum, C. D. Cox, M. L. Simpson and L. S. Weinberger,
Transcriptional burst frequency and burst size are equally modulated across the human genome, P. Natl. Acad. Sci. USA, 109 (2012), 17454-17459.
|
[12] |
R. Dessalles, V. Fromion and P. Robert,
A stochastic analysis of autoregulation of gene expression, J. Math. Biol., 75 (2017), 1253-1283.
doi: 10.1007/s00285-017-1116-7. |
[13] |
M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain,
Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.
|
[14] |
N. Friedman, L. Cai and X. S. Xie, Linking stochastic dynamics to population distribution: An analytical framework of gene expression,
Phys. Rev. Lett., 97 (2006), 168302. |
[15] |
M. W. Hirsch, S. Smale and R. L. Devaney,
Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2004. |
[16] |
G. C. P. Innocentini, M. Forger, O. Radulescu and F. Antoneli,
Protein synthesis driven by dynamical stochastic transcription, B. Math. Biol., 78 (2016), 110-131.
doi: 10.1007/s11538-015-0131-3. |
[17] |
G. C. P. Innocentini, S. Guiziou, J. Bonnet and O. Radulescu, Analytic framework for a stochastic binary biological switch,
Phys. Rev. E, 94 (2016), 062413. |
[18] |
S. Intep and D. J. Higham,
Zero, one and two-switch models of gene regulation, Discrete Cont. Dyn-B., 14 (2010), 495-513.
doi: 10.3934/dcdsb.2010.14.495. |
[19] |
J. Jedrak and A. Ochab-Marcinek, Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound poisson process, Phys. Rev. E, 94 (2016), 032401. |
[20] |
C. Jia, H. Qian, M. Chen and M. Q. Zhang, Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks, J. Chem. Phys., 148 (2018), 095102. |
[21] |
N. Kumar, T. Platini and R. V. Kulkarni, Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113 (2014), 268105. |
[22] |
D. R. Larson, R. H. Singer and D. Zenklusen,
A single molecule view of gene expression, Trends Cell Biol., 19 (2009), 630-637.
|
[23] |
G. Lin, J. Yu, Z. Zhou, Q. Sun and F. Jiao, Fluctuations of mrna distributions in multiple pathway activated transcription, Discrete Cont. Dyn-B., 2018. |
[24] |
Y. T. Lin and N. E. Buchler, Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic markov processes, J. Roy. Soc. Interface, 15 (2018), 20170804. |
[25] |
Y. T. Lin, P. G. Hufton, E. J. Lee and D. A. Potoyan, A stochastic and dynamical view of pluripotency in mouse embryonic stem cells, PloS Comput. Biol., 14 (2018), e1006000. |
[26] |
Y. T. Lin and C. R. Doering, Gene expression dynamics with stochastic bursts: Construction and exact results for a coarse-grained model, Phys. Rev. E, 93 (2016), 022409, 10pp.
doi: 10.1103/physreve.93.022409. |
[27] |
M. Masujima, Applied Mathematical Methods in Theoretical Physics, John Wiley & Sons, 2009.
doi: 10.1002/9783527627745. |
[28] |
N. A. M. Monk,
Oscillatory expression of hes1, p53, and nf-$ \kappa $b driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409-1413.
|
[29] |
M. Pájaro, A. A. Alonso, I. Otero-Muras and C. Vázquez,
Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting, J. Theor. Biol., 421 (2017), 51-70.
doi: 10.1016/j.jtbi.2017.03.017. |
[30] |
J. Peccoud and B. Ycart,
Markovian modeling of gene-product synthesis, Theor. Popul. Biol., 48 (1995), 222-234.
|
[31] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309. |
[32] |
J. Ren, F. Jiao, Q. Sun, M. Tang and J. Yu,
The dynamics of gene transcription in random environments, Discrete Cont. Dyn-B., 23 (2018), 3167-3194.
doi: 10.3934/dcdsb.2018224. |
[33] |
R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, Springer, 2017.
doi: 10.1007/978-3-319-61295-9. |
[34] |
M. A. Schikora-Tamarit, C. Toscano-Ochoa, J. D. Espinos, L. Espinar and L. B. Carey,
A synthetic gene circuit for measuring autoregulatory feedback control, Integr. Biol., 8 (2016), 546-555.
|
[35] |
F. Veerman, C. Marr and N. Popović,
Time-dependent propagators for stochastic models of gene expression: an analytical method, J. Math. Biol., 77 (2018), 261-312.
doi: 10.1007/s00285-017-1196-4. |
[36] |
H. Wang, P. Liu, Q. Li and T. Zhou,
Entangled signal pathways can both control expression stability and induce stochastic focusing, FEBS Lett., 592 (2018), 1135-1149.
|
[37] |
S. Winkelmann and C. Schütte, Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems, J. Chem. Phys., 147 (2017), 114115. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Washington, D.C., 1972. |
[2] |
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter, Molecular Biology of the Cell, Garland Science New York, 2002. |
[3] |
U. Alon,
An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC, 2007. |
[4] |
M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of hes1: Discrete stochastic delay modelling and simulation, PLoS Comput. Biol., 2 (2006), e117. |
[5] |
P. Bokes and A. Singh,
Gene expression noise is affected differentially by feedback in burst frequency and burst size, J. Math. Biol., 74 (2017), 1483-1509.
doi: 10.1007/s00285-016-1059-4. |
[6] |
P. Bokes, Y. T. Lin and A. Singh,
High cooperativity in negative feedback can amplify noisy gene expression, B. Math. Biol., 80 (2018), 1871-1899.
doi: 10.1007/s11538-018-0438-y. |
[7] |
P. Bokes, J. R. King, A. T. A. Wood and M. Loose,
Transcriptional bursting diversifies the behaviour of a toggle switch: hybrid simulation of stochastic gene expression, B. Math. Biol., 75 (2013), 351-371.
doi: 10.1007/s11538-013-9811-z. |
[8] |
L. Cai, N. Friedman and X. S. Xie,
Stochastic protein expression in individual cells at the single molecule level, Nature, 440 (2006), 358-362.
|
[9] |
A. Crudu, A. Debussche, A. Muller and O. Radulescu, others, Convergence of stochastic gene networks to hybrid piecewise deterministic processes, Ann. Appl. Probab., 22 (2012), 1822Ƀ1859.
doi: 10.1214/11-AAP814. |
[10] |
P. Czuppon and P. Pfaffelhuber,
Limits of noise for autoregulated gene expression, J. Math. Biol., 77 (2018), 1153-1191.
doi: 10.1007/s00285-018-1248-4. |
[11] |
R. D. Dar, B. S. Razooky, A. Singh, T. V. Trimeloni, J. M. McCollum, C. D. Cox, M. L. Simpson and L. S. Weinberger,
Transcriptional burst frequency and burst size are equally modulated across the human genome, P. Natl. Acad. Sci. USA, 109 (2012), 17454-17459.
|
[12] |
R. Dessalles, V. Fromion and P. Robert,
A stochastic analysis of autoregulation of gene expression, J. Math. Biol., 75 (2017), 1253-1283.
doi: 10.1007/s00285-017-1116-7. |
[13] |
M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain,
Stochastic gene expression in a single cell, Science, 297 (2002), 1183-1186.
|
[14] |
N. Friedman, L. Cai and X. S. Xie, Linking stochastic dynamics to population distribution: An analytical framework of gene expression,
Phys. Rev. Lett., 97 (2006), 168302. |
[15] |
M. W. Hirsch, S. Smale and R. L. Devaney,
Differential Equations, Dynamical Systems, and an Introduction to Chaos, Academic Press, 2004. |
[16] |
G. C. P. Innocentini, M. Forger, O. Radulescu and F. Antoneli,
Protein synthesis driven by dynamical stochastic transcription, B. Math. Biol., 78 (2016), 110-131.
doi: 10.1007/s11538-015-0131-3. |
[17] |
G. C. P. Innocentini, S. Guiziou, J. Bonnet and O. Radulescu, Analytic framework for a stochastic binary biological switch,
Phys. Rev. E, 94 (2016), 062413. |
[18] |
S. Intep and D. J. Higham,
Zero, one and two-switch models of gene regulation, Discrete Cont. Dyn-B., 14 (2010), 495-513.
doi: 10.3934/dcdsb.2010.14.495. |
[19] |
J. Jedrak and A. Ochab-Marcinek, Time-dependent solutions for a stochastic model of gene expression with molecule production in the form of a compound poisson process, Phys. Rev. E, 94 (2016), 032401. |
[20] |
C. Jia, H. Qian, M. Chen and M. Q. Zhang, Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks, J. Chem. Phys., 148 (2018), 095102. |
[21] |
N. Kumar, T. Platini and R. V. Kulkarni, Exact distributions for stochastic gene expression models with bursting and feedback, Phys. Rev. Lett., 113 (2014), 268105. |
[22] |
D. R. Larson, R. H. Singer and D. Zenklusen,
A single molecule view of gene expression, Trends Cell Biol., 19 (2009), 630-637.
|
[23] |
G. Lin, J. Yu, Z. Zhou, Q. Sun and F. Jiao, Fluctuations of mrna distributions in multiple pathway activated transcription, Discrete Cont. Dyn-B., 2018. |
[24] |
Y. T. Lin and N. E. Buchler, Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic markov processes, J. Roy. Soc. Interface, 15 (2018), 20170804. |
[25] |
Y. T. Lin, P. G. Hufton, E. J. Lee and D. A. Potoyan, A stochastic and dynamical view of pluripotency in mouse embryonic stem cells, PloS Comput. Biol., 14 (2018), e1006000. |
[26] |
Y. T. Lin and C. R. Doering, Gene expression dynamics with stochastic bursts: Construction and exact results for a coarse-grained model, Phys. Rev. E, 93 (2016), 022409, 10pp.
doi: 10.1103/physreve.93.022409. |
[27] |
M. Masujima, Applied Mathematical Methods in Theoretical Physics, John Wiley & Sons, 2009.
doi: 10.1002/9783527627745. |
[28] |
N. A. M. Monk,
Oscillatory expression of hes1, p53, and nf-$ \kappa $b driven by transcriptional time delays, Curr. Biol., 13 (2003), 1409-1413.
|
[29] |
M. Pájaro, A. A. Alonso, I. Otero-Muras and C. Vázquez,
Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting, J. Theor. Biol., 421 (2017), 51-70.
doi: 10.1016/j.jtbi.2017.03.017. |
[30] |
J. Peccoud and B. Ycart,
Markovian modeling of gene-product synthesis, Theor. Popul. Biol., 48 (1995), 222-234.
|
[31] |
A. Raj, C. S. Peskin, D. Tranchina, D. Y. Vargas and S. Tyagi, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 4 (2006), e309. |
[32] |
J. Ren, F. Jiao, Q. Sun, M. Tang and J. Yu,
The dynamics of gene transcription in random environments, Discrete Cont. Dyn-B., 23 (2018), 3167-3194.
doi: 10.3934/dcdsb.2018224. |
[33] |
R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, Springer, 2017.
doi: 10.1007/978-3-319-61295-9. |
[34] |
M. A. Schikora-Tamarit, C. Toscano-Ochoa, J. D. Espinos, L. Espinar and L. B. Carey,
A synthetic gene circuit for measuring autoregulatory feedback control, Integr. Biol., 8 (2016), 546-555.
|
[35] |
F. Veerman, C. Marr and N. Popović,
Time-dependent propagators for stochastic models of gene expression: an analytical method, J. Math. Biol., 77 (2018), 261-312.
doi: 10.1007/s00285-017-1196-4. |
[36] |
H. Wang, P. Liu, Q. Li and T. Zhou,
Entangled signal pathways can both control expression stability and induce stochastic focusing, FEBS Lett., 592 (2018), 1135-1149.
|
[37] |
S. Winkelmann and C. Schütte, Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems, J. Chem. Phys., 147 (2017), 114115. |


[1] |
Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 |
[2] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
[3] |
Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259 |
[4] |
Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 551-568. doi: 10.3934/naco.2021021 |
[5] |
Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885 |
[6] |
Jagadeesh R. Sonnad, Chetan T. Goudar. Solution of the Michaelis-Menten equation using the decomposition method. Mathematical Biosciences & Engineering, 2009, 6 (1) : 173-188. doi: 10.3934/mbe.2009.6.173 |
[7] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[8] |
Chuchu Chen, Jialin Hong, Yulan Lu. Stochastic differential equation with piecewise continuous arguments: Markov property, invariant measure and numerical approximation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022098 |
[9] |
Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217 |
[10] |
Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537 |
[11] |
Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129 |
[12] |
Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57 |
[13] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[14] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432 |
[15] |
Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2129-2145. doi: 10.3934/dcdsb.2021126 |
[16] |
Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015 |
[17] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107 |
[18] |
Karl Peter Hadeler. Michaelis-Menten kinetics, the operator-repressor system, and least squares approaches. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1541-1560. doi: 10.3934/mbe.2013.10.1541 |
[19] |
István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134 |
[20] |
Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]