
-
Previous Article
Minimal forward random point attractors need not exist
- DCDS-B Home
- This Issue
-
Next Article
Existence and approximation of strong solutions of SDEs with fractional diffusion coefficients
Interplay of time-delay and velocity alignment in the Cucker-Smale model on a general digraph
1. | Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China |
2. | Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826, Republic of Korea |
3. | School of Mathematics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea |
We study dynamic interplay between time-delay and velocity alignment in the ensemble of Cucker-Smale (C-S) particles(or agents) on time-varying networks which are modeled by digraphs containing spanning trees. Time-delayed dynamical systems often appear in mathematical models from biology and control theory, and they have been extensively investigated in literature. In this paper, we provide sufficient frameworks for the mono-cluster flocking to the continuous and discrete C-S models, which are formulated in terms of system parameters and initial data. In our proposed frameworks, we show that the continuous and discrete C-S models exhibit exponential flocking estimates. For the explicit C-S communication weights which decay algebraically, our results exhibit threshold phenomena depending on the decay rate and depth of digraph. We also provide several numerical examples and compare them with our analytical results.
References:
[1] |
S. Ahn, H. Choi, S.-Y. Ha and H. Lee,
On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10. |
[2] |
S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[3] |
M. Aouchiche, O. Favaron and P. Hansen,
Variable neighborhood search for extremal graphs. 22. Extending bounds for independence to upper irredundance, Discret Appl. Math., 157 (2009), 3497-3510.
doi: 10.1016/j.dam.2009.04.004. |
[4] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic,
Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105. |
[5] |
R. W. Beard, J. Lawton and and F. Y. Hadaegh,
A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol., 9 (2001), 777-790.
doi: 10.1109/87.960341. |
[6] |
F. Bolley, J. A. Canizo and J. A. Carrillo,
Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702. |
[7] |
J. A. Canizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[8] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[9] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko,
Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287. |
[10] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinetic Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[11] |
Y.-P. Choi and Z. Li,
Emergent behavior of Cucker-Smale flocking particles with time-lags, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018. |
[12] |
J. Cortés, S. Martinez, T. Karatas and F. Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom., 20 (2004), 243-255. Google Scholar |
[13] |
I. D. Couzin, J. Krause, N. R. Franks and S. Levin,
Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.
doi: 10.1038/nature03236. |
[14] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[15] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, J. Math. Pure Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[16] |
F. Cucker and S. Smale,
Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[17] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[18] |
J.-G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[19] |
R. Duan, M. Fornasier and G. Toscani,
A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.
doi: 10.1007/s00220-010-1110-z. |
[20] |
R. Erban, J. Haskovec and Y. Sun,
On Cucker-Smale model with noise and delay, SIAM. J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[21] |
M. Fornasier, J. Haskovec and G. Toscani,
Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.
doi: 10.1016/j.physd.2010.08.003. |
[22] |
S.-Y. Ha, D. Ko and Y. Zhang,
Critical coupling strength of the Cucker-Smale model for flocking, Math. Models Methods Appl. Sci., 27 (2017), 1051-1087.
doi: 10.1142/S0218202517400097. |
[23] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[24] |
S.-Y. Ha and J.-G. Liu,
A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[25] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[26] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[27] |
A. Jadbabaie, J. Lin and A. Morse,
Coordination of groups of mobile autonomous agents using nearest neighbor rules,, IEEE Trans. Automat. Control, 48 (2003), 988-1001.
doi: 10.1109/TAC.2003.812781. |
[28] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[29] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[30] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[31] |
R. Olfati-Saber,
Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420.
doi: 10.1109/TAC.2005.864190. |
[32] |
J. Park, H. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[33] |
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space fight formations, J. Guidance Contr. Dyn., 32 (2009), 526-536. Google Scholar |
[34] |
C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, preprint, arXiv: 1707.05020. Google Scholar |
[35] |
C. Pignotti and I. R. Vallejo,
Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070. |
[36] |
D. Poyato and J. Soler,
Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Mod. Meth. Appl. Sci., 27 (2017), 1089-1152.
doi: 10.1142/S0218202517400103. |
[37] |
C. W. Reynolds,
Flocks, herds, and schools: A distributed behavioral model, Comput. Graph, 21 (1987), 25-34.
doi: 10.1145/37401.37406. |
[38] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.
doi: 10.1137/060673254. |
[39] |
H. G. Tanner, A. Jadbabaie and G. J. Pappas,
Flocking in fixed and switching networks, IEEE Trans. Automat. Control, 52 (2007), 863-868.
doi: 10.1109/TAC.2007.895948. |
[40] |
G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz and T. Vicsek, Outdoor flocking and formation flight with autonomous aerial robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., (2014), 3866-3873. Google Scholar |
[41] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[42] |
T. Vicsek and A. Zefeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[43] |
C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz and T. Vicsek, Flocking algorithm for autonomous flying robots, Bioinspir. Biomim., 9 (2014), 025012. Google Scholar |
show all references
References:
[1] |
S. Ahn, H. Choi, S.-Y. Ha and H. Lee,
On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10. |
[2] |
S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895. |
[3] |
M. Aouchiche, O. Favaron and P. Hansen,
Variable neighborhood search for extremal graphs. 22. Extending bounds for independence to upper irredundance, Discret Appl. Math., 157 (2009), 3497-3510.
doi: 10.1016/j.dam.2009.04.004. |
[4] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic,
Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105. |
[5] |
R. W. Beard, J. Lawton and and F. Y. Hadaegh,
A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol., 9 (2001), 777-790.
doi: 10.1109/87.960341. |
[6] |
F. Bolley, J. A. Canizo and J. A. Carrillo,
Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702. |
[7] |
J. A. Canizo, J. A. Carrillo and J. Rosado,
A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131. |
[8] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani,
Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290. |
[9] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko,
Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287. |
[10] |
Y.-P. Choi and J. Haskovec,
Cucker-Smale model with normalized communication weights and time delay, Kinetic Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040. |
[11] |
Y.-P. Choi and Z. Li,
Emergent behavior of Cucker-Smale flocking particles with time-lags, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018. |
[12] |
J. Cortés, S. Martinez, T. Karatas and F. Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom., 20 (2004), 243-255. Google Scholar |
[13] |
I. D. Couzin, J. Krause, N. R. Franks and S. Levin,
Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.
doi: 10.1038/nature03236. |
[14] |
F. Cucker and J.-G. Dong,
Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355. |
[15] |
F. Cucker and E. Mordecki,
Flocking in noisy environments, J. Math. Pure Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002. |
[16] |
F. Cucker and S. Smale,
Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[17] |
F. Cucker and S. Smale,
On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[18] |
J.-G. Dong and L. Qiu,
Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608. |
[19] |
R. Duan, M. Fornasier and G. Toscani,
A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.
doi: 10.1007/s00220-010-1110-z. |
[20] |
R. Erban, J. Haskovec and Y. Sun,
On Cucker-Smale model with noise and delay, SIAM. J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467. |
[21] |
M. Fornasier, J. Haskovec and G. Toscani,
Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.
doi: 10.1016/j.physd.2010.08.003. |
[22] |
S.-Y. Ha, D. Ko and Y. Zhang,
Critical coupling strength of the Cucker-Smale model for flocking, Math. Models Methods Appl. Sci., 27 (2017), 1051-1087.
doi: 10.1142/S0218202517400097. |
[23] |
S.-Y. Ha, K. Lee and D. Levy,
Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9. |
[24] |
S.-Y. Ha and J.-G. Liu,
A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2. |
[25] |
S.-Y. Ha and E. Tadmor,
From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415. |
[26] |
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer, 1993.
doi: 10.1007/978-1-4612-4342-7. |
[27] |
A. Jadbabaie, J. Lin and A. Morse,
Coordination of groups of mobile autonomous agents using nearest neighbor rules,, IEEE Trans. Automat. Control, 48 (2003), 988-1001.
doi: 10.1109/TAC.2003.812781. |
[28] |
Z. Li and X. Xue,
Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774. |
[29] |
Y. Liu and J. Wu,
Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036. |
[30] |
S. Motsch and E. Tadmor,
A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9. |
[31] |
R. Olfati-Saber,
Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420.
doi: 10.1109/TAC.2005.864190. |
[32] |
J. Park, H. Kim and S.-Y. Ha,
Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070. |
[33] |
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space fight formations, J. Guidance Contr. Dyn., 32 (2009), 526-536. Google Scholar |
[34] |
C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, preprint, arXiv: 1707.05020. Google Scholar |
[35] |
C. Pignotti and I. R. Vallejo,
Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070. |
[36] |
D. Poyato and J. Soler,
Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Mod. Meth. Appl. Sci., 27 (2017), 1089-1152.
doi: 10.1142/S0218202517400103. |
[37] |
C. W. Reynolds,
Flocks, herds, and schools: A distributed behavioral model, Comput. Graph, 21 (1987), 25-34.
doi: 10.1145/37401.37406. |
[38] |
J. Shen,
Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.
doi: 10.1137/060673254. |
[39] |
H. G. Tanner, A. Jadbabaie and G. J. Pappas,
Flocking in fixed and switching networks, IEEE Trans. Automat. Control, 52 (2007), 863-868.
doi: 10.1109/TAC.2007.895948. |
[40] |
G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz and T. Vicsek, Outdoor flocking and formation flight with autonomous aerial robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., (2014), 3866-3873. Google Scholar |
[41] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet,
Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[42] |
T. Vicsek and A. Zefeiris,
Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004. |
[43] |
C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz and T. Vicsek, Flocking algorithm for autonomous flying robots, Bioinspir. Biomim., 9 (2014), 025012. Google Scholar |





| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
$\boldsymbol x_1(t)$ | $(1, 0)$ | $\boldsymbol v_1(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(1, -2)$ | $\boldsymbol x_2(t)$ | $(0, 1)$ | $\boldsymbol v_2(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(3, -4)$ |
$\boldsymbol x_3(t)$ | $(-1, 0)$ | $\boldsymbol v_3(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(5, 6)$ | $\boldsymbol x_4(t)$ | $(0, -1)$ | $\boldsymbol v_4(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(-7, -8)$ |
$\boldsymbol x_1(t)$ | $(1, 0)$ | $\boldsymbol v_1(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(1, -2)$ | $\boldsymbol x_2(t)$ | $(0, 1)$ | $\boldsymbol v_2(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(3, -4)$ |
$\boldsymbol x_3(t)$ | $(-1, 0)$ | $\boldsymbol v_3(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(5, 6)$ | $\boldsymbol x_4(t)$ | $(0, -1)$ | $\boldsymbol v_4(t)$ | $\frac{e^{-10}}{7056 \sqrt{2}}(-7, -8)$ |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
[1] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[2] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
[3] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[4] |
Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007 |
[5] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[6] |
Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035 |
[7] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[8] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[9] |
Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065 |
[10] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[11] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[12] |
Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[13] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[14] |
Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238 |
[15] |
Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021103 |
[16] |
Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021050 |
[17] |
Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221 |
[18] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[19] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[20] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]