[1]
|
S. Ahn, H. Choi, S.-Y. Ha and H. Lee, On the collision avoiding initial-configurations to the Cucker-Smale type flocking models, Comm. Math. Sci., 10 (2012), 625-643.
doi: 10.4310/CMS.2012.v10.n2.a10.
|
[2]
|
S. Ahn and S.-Y. Ha, Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010), 103301, 17pp.
doi: 10.1063/1.3496895.
|
[3]
|
M. Aouchiche, O. Favaron and P. Hansen, Variable neighborhood search for extremal graphs. 22. Extending bounds for independence to upper irredundance, Discret Appl. Math., 157 (2009), 3497-3510.
doi: 10.1016/j.dam.2009.04.004.
|
[4]
|
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci. USA, 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105.
|
[5]
|
R. W. Beard, J. Lawton and and F. Y. Hadaegh, A coordination architecture for spacecraft formation control, IEEE Trans. Control Syst. Technol., 9 (2001), 777-790.
doi: 10.1109/87.960341.
|
[6]
|
F. Bolley, J. A. Canizo and J. A. Carrillo, Stochastic mean-field limit: Non-Lipschitz forces and swarming, Math. Mod. Meth. Appl. Sci., 21 (2011), 2179-2210.
doi: 10.1142/S0218202511005702.
|
[7]
|
J. A. Canizo, J. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011), 515-539.
doi: 10.1142/S0218202511005131.
|
[8]
|
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290.
|
[9]
|
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker-Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287.
|
[10]
|
Y.-P. Choi and J. Haskovec, Cucker-Smale model with normalized communication weights and time delay, Kinetic Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040.
|
[11]
|
Y.-P. Choi and Z. Li, Emergent behavior of Cucker-Smale flocking particles with time-lags, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018.
|
[12]
|
J. Cortés, S. Martinez, T. Karatas and F. Bullo, Coverage control for mobile sensing networks, IEEE Trans. Robot. Autom., 20 (2004), 243-255.
|
[13]
|
I. D. Couzin, J. Krause, N. R. Franks and S. Levin, Effective leadership and decision making in animal groups on the move, Nature, 433 (2005), 513-516.
doi: 10.1038/nature03236.
|
[14]
|
F. Cucker and J.-G. Dong, Avoiding collisions in flocks, IEEE Trans. Automat. Control, 55 (2010), 1238-1243.
doi: 10.1109/TAC.2010.2042355.
|
[15]
|
F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pure Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002.
|
[16]
|
F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.
|
[17]
|
F. Cucker and S. Smale, On the mathematics of emergence, Japan. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x.
|
[18]
|
J.-G. Dong and L. Qiu, Flocking of the Cucker-Smale model on general digraphs, IEEE Trans. Automat. Control, 62 (2017), 5234-5239.
doi: 10.1109/TAC.2016.2631608.
|
[19]
|
R. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Commun. Math. Phys., 300 (2010), 95-145.
doi: 10.1007/s00220-010-1110-z.
|
[20]
|
R. Erban, J. Haskovec and Y. Sun, On Cucker-Smale model with noise and delay, SIAM. J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467.
|
[21]
|
M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Phys. D, 240 (2011), 21-31.
doi: 10.1016/j.physd.2010.08.003.
|
[22]
|
S.-Y. Ha, D. Ko and Y. Zhang, Critical coupling strength of the Cucker-Smale model for flocking, Math. Models Methods Appl. Sci., 27 (2017), 1051-1087.
doi: 10.1142/S0218202517400097.
|
[23]
|
S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9.
|
[24]
|
S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2.
|
[25]
|
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinetic Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.
|
[26]
|
J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[27]
|
A. Jadbabaie, J. Lin and A. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules,, IEEE Trans. Automat. Control, 48 (2003), 988-1001.
doi: 10.1109/TAC.2003.812781.
|
[28]
|
Z. Li and X. Xue, Cucker-Smale flocking under rooted leadership with fixed and switching topologies, SIAM J. Appl. Math., 70 (2010), 3156-3174.
doi: 10.1137/100791774.
|
[29]
|
Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036.
|
[30]
|
S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9.
|
[31]
|
R. Olfati-Saber, Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Automat. Control, 51 (2006), 401-420.
doi: 10.1109/TAC.2005.864190.
|
[32]
|
J. Park, H. Kim and S.-Y. Ha, Cucker-Smale flocking with inter-particle bonding forces, IEEE Tran. Automat. Control, 55 (2010), 2617-2623.
doi: 10.1109/TAC.2010.2061070.
|
[33]
|
L. Perea, P. Elosegui and G. Gómez, Extension of the Cucker-Smale control law to space fight formations, J. Guidance Contr. Dyn., 32 (2009), 526-536.
|
[34]
|
C. Pignotti and E. Trelat, Convergence to consensus of the general finite-dimensional Cucker-Smale model with time-varying delays, preprint, arXiv: 1707.05020.
|
[35]
|
C. Pignotti and I. R. Vallejo, Flocking estimates for the Cucker-Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070.
|
[36]
|
D. Poyato and J. Soler, Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models, Math. Mod. Meth. Appl. Sci., 27 (2017), 1089-1152.
doi: 10.1142/S0218202517400103.
|
[37]
|
C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Comput. Graph, 21 (1987), 25-34.
doi: 10.1145/37401.37406.
|
[38]
|
J. Shen, Cucker-Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007), 694-719.
doi: 10.1137/060673254.
|
[39]
|
H. G. Tanner, A. Jadbabaie and G. J. Pappas, Flocking in fixed and switching networks, IEEE Trans. Automat. Control, 52 (2007), 863-868.
doi: 10.1109/TAC.2007.895948.
|
[40]
|
G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz and T. Vicsek, Outdoor flocking and formation flight with autonomous aerial robots, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., (2014), 3866-3873.
|
[41]
|
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.
|
[42]
|
T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.
|
[43]
|
C. Virágh, G. Vásárhelyi, N. Tarcai, T. Szörényi, G. Somorjai, T. Nepusz and T. Vicsek, Flocking algorithm for autonomous flying robots, Bioinspir. Biomim., 9 (2014), 025012.
|