The current paper is devoted to 3D stochastic Ginzburg-Landau equation with degenerate random forcing. We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure. To accomplish this, firstly we establish a type of gradient inequality, which is also essential to proving asymptotic strong Feller property. Then we prove that the corresponding dynamical system possesses a strong type of Lyapunov structure and is of a relatively weak form of irreducibility.
Citation: |
[1] | M. Barton-Smith, Invariant measure for the stochastic Ginzburg-Landau equation, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 29-52. doi: 10.1007/s00030-003-1040-y. |
[2] | P. Coullet, C. Elphick, L. Gil and Lega, Topological defects of wave patterns, Phys. Rev. Lett., 59 (1987), 884-887. doi: 10.1103/PhysRevLett.59.884. |
[3] | P. Coullet and L. Lega, Defect-mediated turbulence in wave patterns, Europhys. Lett., 7 (1988), 511-516. doi: 10.1209/0295-5075/7/6/006. |
[4] | G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662829. |
[5] | G. Da Parto and J. Zabcyzk, Stochastic Equations in Infinite Dimensionals, Cambridge University Press, Cambridge, 1992. doi: 10.1017/CBO9780511666223. |
[6] | J. Eckmann and M. Haier, Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14 (2001), 133-151. doi: 10.1088/0951-7715/14/1/308. |
[7] | M. Hairer, Exponential mixing properties of stochastic pdes through asymptotic coupling, Probability Theory and Related Fields, 124 (2001), 345-380. doi: 10.1007/s004400200216. |
[8] | J. Mattingly, Exponential convergence for the stochastically forced navier-stokes equations and other partially dissipative dynamics, Communications in Mathematical Physics, 230 (2002), 421-462. doi: 10.1007/s00220-002-0688-1. |
[9] | M. Harier and C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032. doi: 10.4007/annals.2006.164.993. |
[10] | M. Harier and C. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, The Annals of Probabiltiy, 36 (2008), 2050-2091. doi: 10.1214/08-AOP392. |
[11] | M. Hairer, J. Mattingly and M. Scheutzow, Asymptotic coupling and a general form of harris' theorem with applications to stochastic delay equations, Probability Theory and Related Fields, 149 (2011), 223-259. doi: 10.1007/s00440-009-0250-6. |
[12] | A. Joets and R. Ribotta, Defects in Non-linear Waves in Convection, Nonlinear Coherent Structures, 353 (2005), 157-169. doi: 10.1007/BFb0033633. |
[13] | S. Kuksin, Randomly forced CGL equation: Stationary measures and the inviscid limit, J.Phys. A, 37 (2004), 3805-3822. doi: 10.1088/0305-4470/37/12/006. |
[14] | C. Odasso, Ergodicity for the stochastic complex Ginzburg-Landau equations, Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 417-454. doi: 10.1016/j.anihpb.2005.06.002. |
[15] | X. Pu and B. Guo, Momentum estimates and ergodicity for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise, J. Differential Equations, 251 (2011), 1747-1777. doi: 10.1016/j.jde.2011.06.011. |
[16] | M. Rochner and X. Zhang, Stochastic tamed 3D Navier-Stokes equations: Existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (1009), 211-267. doi: 10.1007/s00440-008-0167-5. |
[17] | D. Yang and Z. Hou, Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise, Phys. D, 237 (2008), 82-91. doi: 10.1016/j.physd.2007.08.015. |