-
Previous Article
Spatial dynamics of a Lotka-Volterra model with a shifting habitat
- DCDS-B Home
- This Issue
-
Next Article
Cell-type switches induced by stochastic histone modification inheritance
Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise
College of Science, National University of Defense Technology, Changsha 410073, China |
The current paper is devoted to 3D stochastic Ginzburg-Landau equation with degenerate random forcing. We prove that the corresponding Markov semigroup possesses an exponentially attracting invariant measure. To accomplish this, firstly we establish a type of gradient inequality, which is also essential to proving asymptotic strong Feller property. Then we prove that the corresponding dynamical system possesses a strong type of Lyapunov structure and is of a relatively weak form of irreducibility.
References:
[1] |
M. Barton-Smith,
Invariant measure for the stochastic Ginzburg-Landau equation, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 29-52.
doi: 10.1007/s00030-003-1040-y. |
[2] |
Coullet, Elphick, Gil and Lega,
Topological defects of wave patterns, Phys. Rev. Lett., 59 (1987), 884-887.
doi: 10.1103/PhysRevLett.59.884. |
[3] |
P. Coullet and L. Lega,
Defect-mediated turbulence in wave patterns, Europhys. Lett., 7 (1988), 511-516.
doi: 10.1209/0295-5075/7/6/006. |
[4] |
G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[5] |
G. Da Parto and J. Zabcyzk, Stochastic Equations in Infinite Dimensionals, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[6] |
J. Eckmann and M. Haier,
Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14 (2001), 133-151.
doi: 10.1088/0951-7715/14/1/308. |
[7] |
M. Hairer,
Exponential mixing properties of stochastic pdes through asymptotic coupling, Probability Theory and Related Fields, 124 (2001), 345-380.
doi: 10.1007/s004400200216. |
[8] |
J. Mattingly,
Exponential convergence for the stochastically forced navier-stokes equations and other partially dissipative dynamics, Communications in Mathematical Physics, 230 (2002), 421-462.
doi: 10.1007/s00220-002-0688-1. |
[9] |
M. Harier and C. Mattingly,
Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032.
doi: 10.4007/annals.2006.164.993. |
[10] |
M. Harier and C. Mattingly,
Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, The Annals of Probabiltiy, 36 (2008), 2050-2091.
doi: 10.1214/08-AOP392. |
[11] |
M. Hairer, J. Mattingly and M. Scheutzow,
Asymptotic coupling and a general form of harris' theorem with applications to stochastic delay equations, Probability Theory and Related Fields, 149 (2011), 223-259.
doi: 10.1007/s00440-009-0250-6. |
[12] |
A. Joets and R. Ribotta,
Defects in Non-linear Waves in Convection, Nonlinear Coherent Structures, 353 (2005), 157-169.
doi: 10.1007/BFb0033633. |
[13] |
S. Kuksin,
Randomly forced CGL equation: Stationary measures and the inviscid limit, J.Phys. A, 37 (2004), 3805-3822.
doi: 10.1088/0305-4470/37/12/006. |
[14] |
C. Odasso,
Ergodicity for the stochastic complex Ginzburg-Landau equations, Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 417-454.
doi: 10.1016/j.anihpb.2005.06.002. |
[15] |
X. Pu and B. Guo,
Momentum estimates and ergodicity for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise, J. Differential Equations, 251 (2011), 1747-1777.
doi: 10.1016/j.jde.2011.06.011. |
[16] |
M. Rochner and X. Zhang,
Stochastic tamed 3D Navier-Stokes equations: Existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (1009), 211-267.
doi: 10.1007/s00440-008-0167-5. |
[17] |
D. Yang and Z. Hou,
Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise, Phys. D, 237 (2008), 82-91.
doi: 10.1016/j.physd.2007.08.015. |
show all references
References:
[1] |
M. Barton-Smith,
Invariant measure for the stochastic Ginzburg-Landau equation, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 29-52.
doi: 10.1007/s00030-003-1040-y. |
[2] |
Coullet, Elphick, Gil and Lega,
Topological defects of wave patterns, Phys. Rev. Lett., 59 (1987), 884-887.
doi: 10.1103/PhysRevLett.59.884. |
[3] |
P. Coullet and L. Lega,
Defect-mediated turbulence in wave patterns, Europhys. Lett., 7 (1988), 511-516.
doi: 10.1209/0295-5075/7/6/006. |
[4] |
G. Da Parto and J. Zabcyzk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662829.![]() ![]() |
[5] |
G. Da Parto and J. Zabcyzk, Stochastic Equations in Infinite Dimensionals, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[6] |
J. Eckmann and M. Haier,
Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity, 14 (2001), 133-151.
doi: 10.1088/0951-7715/14/1/308. |
[7] |
M. Hairer,
Exponential mixing properties of stochastic pdes through asymptotic coupling, Probability Theory and Related Fields, 124 (2001), 345-380.
doi: 10.1007/s004400200216. |
[8] |
J. Mattingly,
Exponential convergence for the stochastically forced navier-stokes equations and other partially dissipative dynamics, Communications in Mathematical Physics, 230 (2002), 421-462.
doi: 10.1007/s00220-002-0688-1. |
[9] |
M. Harier and C. Mattingly,
Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math., 164 (2006), 993-1032.
doi: 10.4007/annals.2006.164.993. |
[10] |
M. Harier and C. Mattingly,
Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, The Annals of Probabiltiy, 36 (2008), 2050-2091.
doi: 10.1214/08-AOP392. |
[11] |
M. Hairer, J. Mattingly and M. Scheutzow,
Asymptotic coupling and a general form of harris' theorem with applications to stochastic delay equations, Probability Theory and Related Fields, 149 (2011), 223-259.
doi: 10.1007/s00440-009-0250-6. |
[12] |
A. Joets and R. Ribotta,
Defects in Non-linear Waves in Convection, Nonlinear Coherent Structures, 353 (2005), 157-169.
doi: 10.1007/BFb0033633. |
[13] |
S. Kuksin,
Randomly forced CGL equation: Stationary measures and the inviscid limit, J.Phys. A, 37 (2004), 3805-3822.
doi: 10.1088/0305-4470/37/12/006. |
[14] |
C. Odasso,
Ergodicity for the stochastic complex Ginzburg-Landau equations, Ann. Inst. H. Poincaré Probab. Statist., 42 (2006), 417-454.
doi: 10.1016/j.anihpb.2005.06.002. |
[15] |
X. Pu and B. Guo,
Momentum estimates and ergodicity for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise, J. Differential Equations, 251 (2011), 1747-1777.
doi: 10.1016/j.jde.2011.06.011. |
[16] |
M. Rochner and X. Zhang,
Stochastic tamed 3D Navier-Stokes equations: Existence, uniqueness and ergodicity, Probab. Theory Related Fields, 145 (1009), 211-267.
doi: 10.1007/s00440-008-0167-5. |
[17] |
D. Yang and Z. Hou,
Large deviations for the stochastic derivative Ginzburg-Landau equation with multiplicative noise, Phys. D, 237 (2008), 82-91.
doi: 10.1016/j.physd.2007.08.015. |
[1] |
Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233 |
[2] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[3] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[4] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[5] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[6] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[7] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383 |
[8] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2829-2871. doi: 10.3934/dcds.2020388 |
[9] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[10] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[11] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[12] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[13] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[14] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[15] |
Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2809-2828. doi: 10.3934/dcds.2020386 |
[16] |
Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023 |
[17] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[18] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[19] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[20] |
Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]