\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy

  • * Corresponding author: Juan Belmonte-Beitia

    * Corresponding author: Juan Belmonte-Beitia
Abstract / Introduction Full Text(HTML) Figure(8) / Table(1) Related Papers Cited by
  • In this paper, a non-trivial generalization of a mathematical model put forward in [35] to account for the development of resistance by tumors to chemotherapy is presented. A study of the existence and local stability of the solutions, as well as the ultimate dynamics of the model, is addressed. An analysis of different chemotherapeutical protocols using discretization and optimization methods is carried out. A number of objective functionals are considered and the necessary optimality conditions are provided. Since the control variable appears linearly in the associated problem, optimal controls are concatenations of bang-bang and singular arcs. A formula of the singular control in terms of state and adjoint variables is derived analytically. Bang-bang and singular controls from the numerical simulations are obtained where, in particular, singular controls illustrate the metronomic chemotherapy.

    Mathematics Subject Classification: Primary: 49K15, 49M37; Secondary: 37C10, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portrait of the orbits of system (4). Examples of convergent trajectories to $ P_2 $ for $ x_{0}+y_{0}+z_{0}\leq K $. Parameters used to calculate the phase portrait are given in Table 1

    Figure 2.  Optimal solutions for the objective $ J_{0, 1}(u) $ and $ M = 1/6 $. a) Optimal control $ u^*(t) $ (blue curve) and switching function $ \phi $ (dashed red line) satisfying the bang-bang control law (12). b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 1 $ month

    Figure 3.  Optimal solutions for the objective $ J_{0, 1}(u) $ and $ M = 5 $. a) Optimal control $ u^*(t) $ (blue curve) and switching function $ \phi $ (dashed red line) satisfying the bang-singular-bang control law (24). b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 30 $ months

    Figure 4.  Suboptimal protocol for the objective $ J_{0, 1}(u) $ and $ M = 5 $. a) Suboptimal bang-bang control. b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 30 $ months

    Figure 5.  Optimal solutions for the objective $ J_{1, 0}(u) $ and $ M = 1/6 $. a) Optimal control $ u^*(t) $ (blue curve) and switching function $ \phi $ (dashed red line) satisfying the bang-bang control law (12). b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 1 $ month

    Figure 6.  Optimal solutions for the objective $ J_{1, 0}(u) $ and $ M = 5 $. a) Optimal control $ u^*(t) $ (blue curve) and switching function $ \phi $ (dashed red line) satisfying the bang-singular-bang control law (26). b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 30 $ months

    Figure 7.  Suboptimal protocol for the objective $ J_{1, 0}(u) $ and $ M = 5 $. a) Suboptimal bang-bang control. b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 30 $ months

    Figure 8.  Suboptimal protocol for the objective $ J_{1, 0}(u) $ and $ M = 5 $. a) Suboptimal bang-bang control. b) Sensitive cells $ x(t) $ c) Damaged cells $ y(t) $ d) Resistant cells $ z(t) $. The time horizon was fixed to $ T = 30 $ months

    Table 1.  Values of the biological parameters for the system (4)

    Variable Value Units Reference
    $\rho_s$ 0.000385 day$^{-1}$ [35]
    $\alpha_s$ 0.0382 L day/g [35]
    $\mu_d$ 0.00219 day$^{-1}$ [35]
    $\mu_r$ 0.000544 day$^{-1}$ [35]
    $\rho_r$ 0.000385 day$^{-1}$ [35]
    $\gamma$ 0.000136 day$^{-1}$ Estimated
    $k_s$ 0.474 [35]
    $P_0$ 40 mm [35]
    $x(0)$ $k_s P_0$ mm [35]
    $y(0)$ 0 mm [35]
    $z(0)$ 0 mm [35]
    $K$ 120 mm [35]
     | Show Table
    DownLoad: CSV
  • [1] A. Alvarez-Arenas, A. Podolski-Renic, J. Belmonte-Beitia, M. Pesic and G. F. Calvo, Interplay of Darwinian selection, Lamarckian induction and microvesicle transfer on drug resistance in cancer, Scientific Reports, (submitted).
    [2] P. Bajger, M. Bodzioch and U. Foryś, Overcoming acquired chemotherapy resistance: Insights from mathematical modelling, Communications in Nonlinear Science and Numerical Simulation, (submitted).
    [3] M. Becker and D. Levy, Modeling the transfer of drug resistance in solid tumors, Bulletin of Mathematical Biology, 79 (2017), 2394-2412.  doi: 10.1007/s11538-017-0334-x.
    [4] D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press London; New York [etc.], 1975.
    [5] J. Belmonte-BeitiaT. E. WooleyJ. G. ScottP. K. Maini and E. A. Gaffney, Modelling biological invasions: Individual to population scales at interfaces, Journal of Theoretical Biology, 334 (2013), 1-12.  doi: 10.1016/j.jtbi.2013.05.033.
    [6] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear programming, 2nd ed., Advances in Design and Control, 19, SIAM, Philadelphia, 2010. doi: 10.1137/1.9780898718577.
    [7] M. Bodnar and U. Forys, Two models of drug resistance for low grade gliomas: comparison of the models dynamics, Proceedings of the XXIII National Conference Applications of Mathematics in Biology and Medicine, Politechnika lska, Uniwersytet Warszawski, Gliwice 2017, 37–42.
    [8] B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathematiques and Applications. Springer, Paris, New York, 2003.
    [9] M. CalzadaE. Fernández-Cara and M. Marín, Optimal control oriented to therapy for a free-boundary tumor growth model, Journal of Theoretical Biology, 325 (2013), 1-11.  doi: 10.1016/j.jtbi.2013.02.004.
    [10] G. Camacho and E. Fernández-Cara, Optimal control of some simplified models of tumour growth, International Journal of Control, 84 (2011), 540-550.  doi: 10.1080/00207179.2011.562547.
    [11] C. Carrère, Optimization of an in vitro chemotherapy to avoid resistant tumours, Journal of Theoretical Biology, 413 (2017), 24-33.  doi: 10.1016/j.jtbi.2016.11.009.
    [12] R. H. ChisholmT. LorenziA. LorzA.K. LarsenL. Neves de AlmeidaA. Escargueil and J. Clairambault, Emergence of drug tolerance in cancer cell populations: An evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation, Cancer Research, 15 (2015), 930-939.  doi: 10.1158/0008-5472.CAN-14-2103.
    [13] L. G. de PillisW. GuK. R. FisterT. HeadK. MaplesA. MuruganT. Neal and K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences, 209 (2007), 292-315.  doi: 10.1016/j.mbs.2006.05.003.
    [14] M. Doƚbniak and A. Świerniak, Comparison of simple models of periodic protocols for combined anticancer therapy, Computational and Mathematical Methods in Medicine, (2013), ID 567213, 11pp. doi: 10.1155/2013/567213.
    [15] A. d'OnofrioU. LedzewiczH. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.  doi: 10.1016/j.mbs.2009.08.004.
    [16] S. EckhouseG. Lewison and R. Sullivan, Trends in the global funding and activity of cancer research, Molecular Oncology, 2 (2008), 20-32.  doi: 10.1016/j.molonc.2008.03.007.
    [17] L. A. Fernández and C. Pola, Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint, Discrete and Continuous Dynamical Systems Series B, 19 (2014), 1563-1588.  doi: 10.3934/dcdsb.2014.19.1563.
    [18] R. A. GatenbyA. S. SilvaR. J. Gillies and B. R. Frieden, Adaptative therapy, Cancer Research, 69 (2009), 4894-4903. 
    [19] M. Gerlinger and C. Swanton, How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine, British Journal of Cancer, 103 (2010), 1139-1143.  doi: 10.1038/sj.bjc.6605912.
    [20] D. Kirschner and A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Mathematical Biosciences and Engineering, 6 (2009), 573-583.  doi: 10.3934/mbe.2009.6.573.
    [21] A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM Journal on Control and Optimization, 15 (1977), 256-293.  doi: 10.1137/0315019.
    [22] A. P. Krishchenko and K. E. Starkov, On the global dynamics of a chronic myelogenous leukemia model, Communication in Nonlinear Sciences and Numerical Simulations, 33 (2016), 174-183.  doi: 10.1016/j.cnsns.2015.10.001.
    [23] J. P. LaSalle, An invariance principle in the theory of stability, Center for Dynamical Systems, 1966.
    [24] U. Ledzewicz and H. Schättler, A review of optimal chemotherapy protocols: From mtd towards metronomic therapy, Mathematical Modelling of Natural Phenomena, 9 (2014), 131-152.  doi: 10.1051/mmnp/20149409.
    [25] U. LedzewiczH. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307-323.  doi: 10.3934/mbe.2011.8.307.
    [26] U. LedzewiczJ. Munden and H. Schättler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 415-438.  doi: 10.3934/dcdsb.2009.12.415.
    [27] U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems Series B, 6 (2006), 129-150.  doi: 10.3934/dcdsb.2006.6.129.
    [28] U. LedzewiczH. SchättlerM. R. Gahrooi and S. M. Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering, 10 (2013), 803-819.  doi: 10.3934/mbe.2013.10.803.
    [29] U. LedzewiczS. WangH. SchättlerN. AndréM. A. Heng and E. Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, Mathematical Biosciences and Engineering, 14 (2017), 217-235.  doi: 10.3934/mbe.2017014.
    [30] Q. LiA. WennborgE. AurellE. DekelJ. ZouY. XuS. Huang and I. Ernberg, Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape, Proceedings of the National Academy of Sciences, 113 (2016), 2672-2677.  doi: 10.1073/pnas.1519210113.
    [31] D. L. Lukes, Differential Equations: Classical to Controlled, Academic Press New York, 1982.
    [32] H. Maurer, Numerical solution of singular control problems using multiple shooting techniques, Journal of Optimization Theory and Applications, 18 (1976), 235-257.  doi: 10.1007/BF00935706.
    [33] H. MaurerC. BüskensJ. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2005), 129-156.  doi: 10.1002/oca.756.
    [34] G. MorganR. Ward and M. Barton, The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies, Clinical Oncology, 16 (2004), 549-560.  doi: 10.1016/j.clon.2004.06.007.
    [35] W. Ollier et. al., Analysis of temozolomide resistance in low-grade gliomas using a mechanistic mathematical model, Fundamental & Clinical Pharmacology, 31 (2017), 347-358.
    [36] N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012. doi: 10.1137/1.9781611972368.
    [37] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1991. doi: 10.1007/978-1-4684-0392-3.
    [38] A. O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson and S. Huang, Non-Darwinian dynamics in therapy-induced cancer drug resistance, Nature Communications, 4 (2013), 2467. doi: 10.1038/ncomms3467.
    [39] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. Mishchenko, The Mathematical theory of optimal processes (International Series of Monographs in Pure and Applied Mathematics), Interscience Publishers, 1962.
    [40] C. PoucholJ. ClairambaultA. Lorz and E. Trelat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, Journal de Mathematiques Pures et Appliques, 116 (2017), 268-308.  doi: 10.1016/j.matpur.2017.10.007.
    [41] M. Rabe, et al., A transient population precedes and supports the acquisition of temozolomide resistance in glioblastoma, Nature Communications, (submitted).
    [42] C. RojasJ. Belmonte-BeitiaV. M. Perez-Garcia and H. Maurer, Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model, Discrete and Continuous Dynamical Systems Series B, 21 (2016), 1895-1915.  doi: 10.3934/dcdsb.2016028.
    [43] M. RosaA. Podolski-RenicA. Alvarez-ArenasJ. DinicJ. Belmonte-BeitiaM. Pesic and V. M. Perez-Garcia, Transfer of drug resistance characteristics between cancer cell subpopulations: A study using simple mathematical models, Bulletin of Mathematical Biology, 78 (2016), 1218-1237.  doi: 10.1007/s11538-016-0182-0.
    [44] E. M. Rutter and Y. Kuang, Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer, Discrete and Continuous Dynamical Systems Series B, 22 (2017), 1001-1021.  doi: 10.3934/dcdsb.2017050.
    [45] H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Interdisciplinary Applied Mathematics, Volume 38, Springer, New York, 2012. doi: 10.1007/978-1-4614-3834-2.
    [46] H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Application of Geometric Methods, Interdisciplinary Applied Mathematics, Volume 42, Springer, New York, 2015. doi: 10.1007/978-1-4939-2972-6.
    [47] R. L. SiegelK. D. Miller and A. Jemal, Cancer statistics, CA: A Cancer Journal for Clinicians, 66 (2016), 7-30. 
    [48] K. E. Starkov and L. Jimenez-Beristain, Dynamic analysis of the melanoma model: From cancer persistence to Its eradication, International Journal of Bifurcation and Chaos, 27 (2017), 1750151, 11pp. doi: 10.1142/S0218127417501516.
    [49] K. E. Starkov and A. P. Krishchenko, Ultimate dynamics of the Kirshchner-Panetta model: Tumor eradication and related problems, Physics Letters A, 381 (2017), 3409-3416.  doi: 10.1016/j.physleta.2017.08.048.
    [50] X. Sun, J. Bao and Y. Shao, Mathematical modeling of therapy-induced cancer drug resistance: Connecting cancer mechanisms to population survival rates, Scientific Reports, 6 (2016), 22498. doi: 10.1038/srep22498.
    [51] G. W. Swan, Applications of Optimal Control Theory in Biomedicine, Monographs and textbooks in pure and applied mathematics. M. Dekker, New York, 1984.
    [52] C. Tomasetti and D. Levy, An elementary approach to modeling drug resistance in cancer, Mathematical Biosciences and Engineering, 7 (2010), 905-918.  doi: 10.3934/mbe.2010.7.905.
    [53] A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.  doi: 10.1007/s10107-004-0559-y.
    [54] J. X. Zhou, A. O. Pisco, H. Qian and S. Huang, Non-equilibrium population dynamics of phenotype conversion of cancer cells, PLOS ONE, 9 (2014), e110714.
  • 加载中

Figures(8)

Tables(1)

SHARE

Article Metrics

HTML views(2312) PDF downloads(391) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return