[1]
|
A. Alvarez-Arenas, A. Podolski-Renic, J. Belmonte-Beitia, M. Pesic and G. F. Calvo, Interplay of Darwinian selection, Lamarckian induction and microvesicle transfer on drug resistance in cancer, Scientific Reports, (submitted).
|
[2]
|
P. Bajger, M. Bodzioch and U. Foryś, Overcoming acquired chemotherapy resistance: Insights from mathematical modelling, Communications in Nonlinear Science and Numerical Simulation, (submitted).
|
[3]
|
M. Becker and D. Levy, Modeling the transfer of drug resistance in solid tumors, Bulletin of Mathematical Biology, 79 (2017), 2394-2412.
doi: 10.1007/s11538-017-0334-x.
|
[4]
|
D. J. Bell and D. H. Jacobson, Singular Optimal Control Problems, Academic Press London; New York [etc.], 1975.
|
[5]
|
J. Belmonte-Beitia, T. E. Wooley, J. G. Scott, P. K. Maini and E. A. Gaffney, Modelling biological invasions: Individual to population scales at interfaces, Journal of Theoretical Biology, 334 (2013), 1-12.
doi: 10.1016/j.jtbi.2013.05.033.
|
[6]
|
J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear programming, 2nd ed., Advances in Design and Control, 19, SIAM, Philadelphia, 2010.
doi: 10.1137/1.9780898718577.
|
[7]
|
M. Bodnar and U. Forys, Two models of drug resistance for low grade gliomas: comparison of the models dynamics, Proceedings of the XXIII National Conference Applications of Mathematics in Biology and Medicine, Politechnika lska, Uniwersytet Warszawski, Gliwice 2017, 37–42.
|
[8]
|
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathematiques and Applications. Springer, Paris, New York, 2003.
|
[9]
|
M. Calzada, E. Fernández-Cara and M. Marín, Optimal control oriented to therapy for a free-boundary tumor growth model, Journal of Theoretical Biology, 325 (2013), 1-11.
doi: 10.1016/j.jtbi.2013.02.004.
|
[10]
|
G. Camacho and E. Fernández-Cara, Optimal control of some simplified models of tumour growth, International Journal of Control, 84 (2011), 540-550.
doi: 10.1080/00207179.2011.562547.
|
[11]
|
C. Carrère, Optimization of an in vitro chemotherapy to avoid resistant tumours, Journal of Theoretical Biology, 413 (2017), 24-33.
doi: 10.1016/j.jtbi.2016.11.009.
|
[12]
|
R. H. Chisholm, T. Lorenzi, A. Lorz, A.K. Larsen, L. Neves de Almeida, A. Escargueil and J. Clairambault, Emergence of drug tolerance in cancer cell populations: An evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation, Cancer Research, 15 (2015), 930-939.
doi: 10.1158/0008-5472.CAN-14-2103.
|
[13]
|
L. G. de Pillis, W. Gu, K. R. Fister, T. Head, K. Maples, A. Murugan, T. Neal and K. Yoshida, Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences, 209 (2007), 292-315.
doi: 10.1016/j.mbs.2006.05.003.
|
[14]
|
M. Doƚbniak and A. Świerniak, Comparison of simple models of periodic protocols for combined anticancer therapy, Computational and Mathematical Methods in Medicine, (2013), ID 567213, 11pp.
doi: 10.1155/2013/567213.
|
[15]
|
A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, 222 (2009), 13-26.
doi: 10.1016/j.mbs.2009.08.004.
|
[16]
|
S. Eckhouse, G. Lewison and R. Sullivan, Trends in the global funding and activity of cancer research, Molecular Oncology, 2 (2008), 20-32.
doi: 10.1016/j.molonc.2008.03.007.
|
[17]
|
L. A. Fernández and C. Pola, Catalog of the optimal controls in cancer chemotherapy for the Gompertz model depending on PK/PD and the integral constraint, Discrete and Continuous Dynamical Systems Series B, 19 (2014), 1563-1588.
doi: 10.3934/dcdsb.2014.19.1563.
|
[18]
|
R. A. Gatenby, A. S. Silva, R. J. Gillies and B. R. Frieden, Adaptative therapy, Cancer Research, 69 (2009), 4894-4903.
|
[19]
|
M. Gerlinger and C. Swanton, How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine, British Journal of Cancer, 103 (2010), 1139-1143.
doi: 10.1038/sj.bjc.6605912.
|
[20]
|
D. Kirschner and A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Mathematical Biosciences and Engineering, 6 (2009), 573-583.
doi: 10.3934/mbe.2009.6.573.
|
[21]
|
A. J. Krener, The high order maximal principle and its application to singular extremals, SIAM Journal on Control and Optimization, 15 (1977), 256-293.
doi: 10.1137/0315019.
|
[22]
|
A. P. Krishchenko and K. E. Starkov, On the global dynamics of a chronic myelogenous leukemia model, Communication in Nonlinear Sciences and Numerical Simulations, 33 (2016), 174-183.
doi: 10.1016/j.cnsns.2015.10.001.
|
[23]
|
J. P. LaSalle, An invariance principle in the theory of stability, Center for Dynamical Systems, 1966.
|
[24]
|
U. Ledzewicz and H. Schättler, A review of optimal chemotherapy protocols: From mtd towards metronomic therapy, Mathematical Modelling of Natural Phenomena, 9 (2014), 131-152.
doi: 10.1051/mmnp/20149409.
|
[25]
|
U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Mathematical Biosciences and Engineering, 8 (2011), 307-323.
doi: 10.3934/mbe.2011.8.307.
|
[26]
|
U. Ledzewicz, J. Munden and H. Schättler, Scheduling of angiogenic inhibitors for Gompertzian and logistic tumor growth models, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 415-438.
doi: 10.3934/dcdsb.2009.12.415.
|
[27]
|
U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems Series B, 6 (2006), 129-150.
doi: 10.3934/dcdsb.2006.6.129.
|
[28]
|
U. Ledzewicz, H. Schättler, M. R. Gahrooi and S. M. Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Mathematical Biosciences and Engineering, 10 (2013), 803-819.
doi: 10.3934/mbe.2013.10.803.
|
[29]
|
U. Ledzewicz, S. Wang, H. Schättler, N. André, M. A. Heng and E. Pasquier, On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach, Mathematical Biosciences and Engineering, 14 (2017), 217-235.
doi: 10.3934/mbe.2017014.
|
[30]
|
Q. Li, A. Wennborg, E. Aurell, E. Dekel, J. Zou, Y. Xu, S. Huang and I. Ernberg, Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape, Proceedings of the National Academy of Sciences, 113 (2016), 2672-2677.
doi: 10.1073/pnas.1519210113.
|
[31]
|
D. L. Lukes, Differential Equations: Classical to Controlled, Academic Press New York, 1982.
|
[32]
|
H. Maurer, Numerical solution of singular control problems using multiple shooting techniques, Journal of Optimization Theory and Applications, 18 (1976), 235-257.
doi: 10.1007/BF00935706.
|
[33]
|
H. Maurer, C. Büskens, J. H. R. Kim and C. Y. Kaya, Optimization methods for the verification of second order sufficient conditions for bang-bang controls, Optimal Control Applications and Methods, 26 (2005), 129-156.
doi: 10.1002/oca.756.
|
[34]
|
G. Morgan, R. Ward and M. Barton, The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies, Clinical Oncology, 16 (2004), 549-560.
doi: 10.1016/j.clon.2004.06.007.
|
[35]
|
W. Ollier et. al., Analysis of temozolomide resistance in low-grade gliomas using a mechanistic mathematical model, Fundamental & Clinical Pharmacology, 31 (2017), 347-358.
|
[36]
|
N. P. Osmolovskii and H. Maurer, Applications to Regular and Bang-Bang Control: Second-order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control, SIAM Advances in Design and Control, Vol. DC 24, SIAM Publications, Philadelphia, 2012.
doi: 10.1137/1.9781611972368.
|
[37]
|
L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1991.
doi: 10.1007/978-1-4684-0392-3.
|
[38]
|
A. O. Pisco, A. Brock, J. Zhou, A. Moor, M. Mojtahedi, D. Jackson and S. Huang, Non-Darwinian dynamics in therapy-induced cancer drug resistance, Nature Communications, 4 (2013), 2467.
doi: 10.1038/ncomms3467.
|
[39]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. Mishchenko, The Mathematical theory of optimal processes (International Series of Monographs in Pure and Applied Mathematics), Interscience Publishers, 1962.
|
[40]
|
C. Pouchol, J. Clairambault, A. Lorz and E. Trelat, Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy, Journal de Mathematiques Pures et Appliques, 116 (2017), 268-308.
doi: 10.1016/j.matpur.2017.10.007.
|
[41]
|
M. Rabe, et al., A transient population precedes and supports the acquisition of temozolomide resistance in glioblastoma, Nature Communications, (submitted).
|
[42]
|
C. Rojas, J. Belmonte-Beitia, V. M. Perez-Garcia and H. Maurer, Dynamics and optimal control of chemotherapy for low grade gliomas: Insights from a mathematical model, Discrete and Continuous Dynamical Systems Series B, 21 (2016), 1895-1915.
doi: 10.3934/dcdsb.2016028.
|
[43]
|
M. Rosa, A. Podolski-Renic, A. Alvarez-Arenas, J. Dinic, J. Belmonte-Beitia, M. Pesic and V. M. Perez-Garcia, Transfer of drug resistance characteristics between cancer cell subpopulations: A study using simple mathematical models, Bulletin of Mathematical Biology, 78 (2016), 1218-1237.
doi: 10.1007/s11538-016-0182-0.
|
[44]
|
E. M. Rutter and Y. Kuang, Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer, Discrete and Continuous Dynamical Systems Series B, 22 (2017), 1001-1021.
doi: 10.3934/dcdsb.2017050.
|
[45]
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Interdisciplinary Applied Mathematics, Volume 38, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[46]
|
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies: An Application of Geometric Methods, Interdisciplinary Applied Mathematics, Volume 42, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[47]
|
R. L. Siegel, K. D. Miller and A. Jemal, Cancer statistics, CA: A Cancer Journal for Clinicians, 66 (2016), 7-30.
|
[48]
|
K. E. Starkov and L. Jimenez-Beristain, Dynamic analysis of the melanoma model: From cancer persistence to Its eradication, International Journal of Bifurcation and Chaos, 27 (2017), 1750151, 11pp.
doi: 10.1142/S0218127417501516.
|
[49]
|
K. E. Starkov and A. P. Krishchenko, Ultimate dynamics of the Kirshchner-Panetta model: Tumor eradication and related problems, Physics Letters A, 381 (2017), 3409-3416.
doi: 10.1016/j.physleta.2017.08.048.
|
[50]
|
X. Sun, J. Bao and Y. Shao, Mathematical modeling of therapy-induced cancer drug resistance: Connecting cancer mechanisms to population survival rates, Scientific Reports, 6 (2016), 22498.
doi: 10.1038/srep22498.
|
[51]
|
G. W. Swan, Applications of Optimal Control Theory in Biomedicine, Monographs and textbooks in pure and applied mathematics. M. Dekker, New York, 1984.
|
[52]
|
C. Tomasetti and D. Levy, An elementary approach to modeling drug resistance in cancer, Mathematical Biosciences and Engineering, 7 (2010), 905-918.
doi: 10.3934/mbe.2010.7.905.
|
[53]
|
A. Wächter and L. T. Biegler, On the implementation of a primal-dual interior-point filter line-search algorithm for large-scale nonlinear programming, Mathematical Programming, 106 (2006), 25-57.
doi: 10.1007/s10107-004-0559-y.
|
[54]
|
J. X. Zhou, A. O. Pisco, H. Qian and S. Huang, Non-equilibrium population dynamics of phenotype conversion of cancer cells, PLOS ONE, 9 (2014), e110714.
|