[1]
|
P. Bajger, M. Bodzioch and U. Foryś, Role of cell competition in acquired chemotherapy resistance, Proceedings of the 16th Conference on Computational and Mathematical Methods in Science and Engineering, 1 (2016), 132-141.
|
[2]
|
R. H. Chisholm, T. Lorenzi and J. Clairambault, Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation, Biochim Biophys Acta, 1860 (2016), 2627-2645.
doi: 10.1016/j.bbagen.2016.06.009.
|
[3]
|
H. Cho and D. Levy, Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth, J Theor Biol, 436 (2018), 120-134.
doi: 10.1016/j.jtbi.2017.10.005.
|
[4]
|
I. Fidler and L. Ellis, Chemotherapeutic drugs – more really is not better, Nat Med, 6 (2000), 500-502.
doi: 10.1038/74969.
|
[5]
|
J. Foo and F. Michor, Evolution of acquired resistance to anti-cancertherapy, J Theor Biol, 355 (2014), 10-20.
doi: 10.1016/j.jtbi.2014.02.025.
|
[6]
|
M. Gottesman, Mechanisms of cancer drug resistance, Annu Rev of Med, 53 (2002), 615-627.
doi: 10.1146/annurev.med.53.082901.103929.
|
[7]
|
P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term tumor burden: The logic for metronomic chemotherapeutic dosing and its antiangiogenic basis, J Theor Biol, 220 (2003), 545-554.
doi: 10.1006/jtbi.2003.3162.
|
[8]
|
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res, 59 (1999), 4770-4775.
|
[9]
|
I. Kareva, D. Waxman and G. Klement, Metronomic chemotherapy: An attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance, Cancer Lett, 358 (2015), 100-106.
doi: 10.1016/j.canlet.2014.12.039.
|
[10]
|
O. Lavi, J. Greene, D. Levy and M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Res, 73 (2013), 7168-7175.
doi: 10.1158/0008-5472.CAN-13-1768.
|
[11]
|
U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete Cont Dyn-B, 6 (2006), 129-150.
doi: 10.3934/dcdsb.2006.6.129.
|
[12]
|
U. Ledzewicz and H. Schättler, On optimal therapy for heterogeneous tumors, J Biol Sys, 22 (2014), 177-197.
doi: 10.1142/S0218339014400014.
|
[13]
|
H. Monro and E. Gaffney, Modelling chemotherapy resistance in palliation and failed cure, Journal Theor Biol, 257 (2009), 292-302.
doi: 10.1016/j.jtbi.2008.12.006.
|
[14]
|
L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, The Mathematical Theory of Optimal Processes, MacMillan, New York, 1964.
|
[15]
|
P. Savage, J. Stebbing, M. Bower and T. Crook, Why does cytotoxic chemotherapy cure only some cancers?, Nat Clin Pract Oncol, 6 (2009), 43-52.
doi: 10.1038/ncponc1260.
|
[16]
|
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Springer, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[17]
|
H. Skipper, Prospectives in Cancer Chemotherapy: Therapeutic Design, Cancer Res, 24 (1964), 1295-1302.
|
[18]
|
J. Śmieja and A. Świerniak, Different models of chemotherapy taking into account drug resistance stemming from gene amplification, Int J Ap Mat Com-Pol, 13 (2003), 297-305.
|
[19]
|
J. Śmieja, A. Świerniak and Z. Duda, Gradient method for finding optimal scheduling in infinite dimensional models of chemotherapy, J Theor Med, 3 (2000), 25-36.
doi: 10.1080/10273660008833062.
|
[20]
|
G. Swan, Role of optimal control in cancer chemotherapy, Math Biosci, 101 (1990), 237-284.
doi: 10.1016/0025-5564(90)90021-P.
|
[21]
|
A. Świerniak, A. Polański, J. Śmieja and M. Kimmel, Modelling growth of drug resistant cancer populations as the system with positive feedback, Math Comput Model, 37 (2003), 1245-1252.
doi: 10.1016/S0895-7177(03)00134-1.
|