In the present paper we propose and study a simple model of collagen remodeling occurring in latter stage of tendon healing process. The model is an integro-differential equation describing the possibility of an alignment of collagen fibers in a finite time. We show that the solutions may either exist globally in time or blow-up in a finite time depending on initial data. The latter behavior can be related to the healing of injury without the scar formation in a finite time: a full alignment of collagen fibers. We believe that the present model is an essential ingredient of the full description of collagen remodeling.
Citation: |
Figure 2. Model simulation for an initial condition with plateau present for each x ∈ D ("truncated tops"). Parameters β ≡ 1 and γ = 2 were assumed. Lower panels show a section of the solution at x = 0:0. Prior to the time t = 30:0, the solution attains a state which undergoes no further visible changes, and as such probably approximates an equilibrium of the model
[1] |
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Birkhäuser, Boston, 2014.
doi: 10.1007/978-3-319-05140-6.![]() ![]() ![]() |
[2] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math Models Methods Appl Sci., 22 (2012), 1140006, 29pp.
doi: 10.1142/S0218202511400069.![]() ![]() ![]() |
[3] |
P. K. Beredjiklian, Biologic aspects of flexor tendon laceration and repair, J Bone Joint Surg Am., 85 (2003), 539-550.
doi: 10.2106/00004623-200303000-00025.![]() ![]() |
[4] |
J. C. Dallon and J. A. Sherratt, A mathematical model for fibroblast and collagen orientation, Bull Math Biol., 60 (1998), 101-129.
doi: 10.1006/bulm.1997.0027.![]() ![]() |
[5] |
J. C. Dallon, J. A. Sherratt and P. K. Maini, Mathematical modelling of extracellular matrix dynamics using discrete cells: fiber orientation and tissue regeneration, J Theor Biol., 199 (1999), 449-471.
doi: 10.1006/jtbi.1999.0971.![]() ![]() |
[6] |
D. Docheva, S. A. Müller, M. Majewski and Ch. H. Evans, Biologics for tendon repair, Adv Drug Deliv Rev., 84 (2015), 222-239.
doi: 10.1016/j.addr.2014.11.015.![]() ![]() |
[7] |
E. Geigant and M. Stoll, Bifurcation analysis of an orientational aggregation model, J Math Biol., 46 (2003), 537-563.
doi: 10.1007/s00285-002-0187-1.![]() ![]() ![]() |
[8] |
L. Geris, A. Gerisch and R. C. Schugart, Mathematical modeling in wound healing, bone regeneration and tissue engineering, Acta Biotheor., 58 (2010), 355-367.
doi: 10.1007/s10441-010-9112-y.![]() ![]() |
[9] |
K. Kang, B. Perthame, A. Stevens and J. J. L. Velázquez, An integro-differential equation model for alignment and orientational aggregation, J Diff Eqs., 246 (2009), 1387-1421.
doi: 10.1016/j.jde.2008.11.006.![]() ![]() ![]() |
[10] |
M. Lachowicz, H. Leszczyński and M. Parisot, A simple kinetic equation of swarm formation: Blow-up and global existence, Appl Math Letters, 57 (2016), 104-107.
doi: 10.1016/j.aml.2016.01.008.![]() ![]() ![]() |
[11] |
M. Lachowicz, H. Leszczyński and M. Parisot, Blow-up and global existence for a kinetic equation of swarm formation, Math Models Methods Appl Sci., 27 (2017), 1153-1175.
doi: 10.1142/S0218202517400115.![]() ![]() ![]() |
[12] |
T. W. Lin, L. Cardenas and L. J. Soslowsky, Biomechanics of tendon injury and repair, J Biomech., 37 (2004), 865-877.
doi: 10.1016/j.jbiomech.2003.11.005.![]() ![]() |
[13] |
S. McDougall, J. C. Dallon, J. A. Sherratt and P. K. Maini, Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications, Philos Trans A Math Phys Eng Sci., 364 (2006), 1385-1405.
doi: 10.1098/rsta.2006.1773.![]() ![]() ![]() |
[14] |
M. O'Brian, Anatomy of tendon, in Tendon Injuries (eds. N. Maffulli, P. Renström and W.B. Leadbetter), Springer-Verlag, (2005), 3–13.
![]() |
[15] |
H. G. Othmer, S. R. Dunbar and W. Alt, Models of dispersal in biological systems, J Math Biol., 26 (1988), 263-298.
doi: 10.1007/BF00277392.![]() ![]() ![]() |
[16] |
M. Parisot and M. Lachowicz, A kinetic model for the formation of swarms with nonlinear interactions, Kinetic & Related Models, 9 (2016), 131-164.
doi: 10.3934/krm.2016.9.131.![]() ![]() ![]() |
[17] |
P. Sharma and N. Maffulli, Biology of tendon injury: Healing, modeling and remodeling, J Musculoskelet Neuronal Interact., 6 (2006), 181-190.
![]() |
[18] |
J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc Biol Sci., 241 (1990), 29-36.
![]() |
[19] |
J. A. Sherratt and J. C. Dallon, Theoretical models of wound healing: Past successes and future challenges, C R Biol., 325 (2002), 557-564.
doi: 10.1016/S1631-0691(02)01464-6.![]() ![]() |
[20] |
R. T. Tranquillo and J. D. Murray, Continuum model of fibroblast-driven wound contraction: Inflammation-mediation, J Theor Biol., 158 (1992), 135-172.
doi: 10.1016/S0022-5193(05)80715-5.![]() ![]() |
[21] |
G. Yang, B. B. Rothrauff and R. S. Tuan, Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm, Birth Defects Res C Embryo Today., 99 (2013), 203-222.
doi: 10.1002/bdrc.21041.![]() ![]() |
Model simulation for an initial condition with no plateau. Parameters β ≡ 1 and γ = 2 were assumed. Lower panels show a section of the solution at x = 0:0. In our opinion, due to high mass concentration, the last relevant time step of the simulation is t = 15:3
Model simulation for an initial condition with plateau present for each x ∈ D ("truncated tops"). Parameters β ≡ 1 and γ = 2 were assumed. Lower panels show a section of the solution at x = 0:0. Prior to the time t = 30:0, the solution attains a state which undergoes no further visible changes, and as such probably approximates an equilibrium of the model