[1]
|
G. Cantelli, E. Crosas-Molist1, M. Georgouli and V. Sanz-Moreno, TGFB-induced transcription in cancer, Seminars in Cancer Biology, 42 (2017), 60-69.
doi: 10.1016/j.semcancer.2016.08.009.
|
[2]
|
T. Chanmee, P. Ontong, K. Konno and N. Itano, Tumor-associated macrophages as major players in the tumor microenvironment, Cancers, 6 (2014), 1670-1690.
|
[3]
|
X. Chen and J. J. Oppenheim, Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity, FEBS Lett., 585 (2011), 3611-3618.
|
[4]
|
D. Chen, A. A. Bobko, A. C. Gross, R. Evans, C. B. Marsh and V. V. Khramtsov, et al., Involvement of tumor macrophage HIFs in chemotherapy effectiveness: mathematical modeling of oxygen, pH, and glutathione., PLoS ONE, 9 (2014), e107511.
|
[5]
|
X. Cheng, V. Veverka, A. Radhakrishnan, L. C. Waters, F. W. Muskett and S. H. Morgan, et al., Human PD-L1/B7-H1/CD274 Protein, Sino Biological Inc., http://www.sinobiological.com/PD-L1-B7-H1-CD274-Protein-g-533.html.
|
[6]
|
T. Condamine and D. I. Gabrilovich, Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function, Trends Immunol., 32 (2011), 19-25.
|
[7]
|
A. Friedman and X. Lai, Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model, PLoS ONE, 2 (2018), e0192449.
|
[8]
|
W. Hao and A. Friedman, The role of exosomes in pancreatic cancer microenvironment, Bull. Math. Biol., 80 (2018), 1111-1133.
doi: 10.1007/s11538-017-0254-9.
|
[9]
|
W. Hao and A. Friedman, Mathematical model on Alzheimer's disease, BMC Syst. Biol., 10 (2016), 1-18.
|
[10]
|
W. Hao and A Friedman, Serum uPAR as biomarker in breast cancer recurrence: A mathematical model, PLoS ONE, 11 (2016), e0153508.
|
[11]
|
W. Hao, H. M. Komar, P. A. Hart, D. L. Conwell, G. B. Lesinski and A. Friedman, A mathematical model of chronic pancreatitis, Proc. Natl. Acad. Sci. USA, 114 (2017), 5011-5016.
doi: 10.1073/pnas.1620264114.
|
[12]
|
J. M. T. Janco, P. Lamichhane, L. Karyampudi and K. L. Knutson, Tumor-infiltrating dendritic cells in cancer pathogenesis, J. Immunol., 194 (2015), 2985-2991.
|
[13]
|
Y. Kim, S. Lawler, M. O. Nowicki, E. A. Chiocca and A. Friedman, A mathematical model for pattern formation of glioma cells outside the tumor spheroid core, J. Theor. Biol., 260 (2009), 359-371.
doi: 10.1016/j.jtbi.2009.06.025.
|
[14]
|
Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments, J. Theor. Biol., 61 (2010), 401-421.
doi: 10.1007/s00285-009-0307-2.
|
[15]
|
X. Lai and A. Friedman, Combination therapy of cancer with BRAF inhibitor and immune checkpoint inhibitor: A mathematical model, BMC System Biology, 11 (2017), 1-18.
|
[16]
|
X. Lai, A. Stiff, M. Duggan, R. Wesolowski, W. E. Carson III and A. Friedman, Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors, Proc. Natl. Acad. Sci. USA, 115 (2018), 5534-5539.
|
[17]
|
K. L. Liao, X. F. Bai and A. Friedman, Mathematical modeling of interleukin-27 induction of anti-tumor T cells response, PLoS ONE, 9 (2014), e91844.
|
[18]
|
Y. Ma, G. V. Shurin1, Z. Peiyuan and M. R. Shurin, Dendritic Cells in the Cancer Microenvironment., J. Cancer, 4 (2013), 36-44.
|
[19]
|
M. L. Maitland, C. Hudoba, K. L. Snider and M. J. Ratain, Analysis of the yield of phase Ⅱ combination therapy trials in medical oncology, Clinical Cancer Research, (2010), 1078-0432.
|
[20]
|
J. Markowitz, R. Wesolowski, T. Papenfuss, T. R. Brooks and W. E. Carson, Myeloid-derived suppressor cells in breast cancer., Breast Cancer Res. Treat., 140 (2013), 13-21.
|
[21]
|
R. L. Mautea, S. R. Gordona, A. T. Mayere, M. N. McCrackena, A. Natarajane and N. G. Ring, et al., Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging., Proc. Natl. Acad. Sci. USA, 112 (2015), E6506-E6514.
|
[22]
|
P. Muller, K. Martin, S. Theurich, M. V. Bergwelt-Baildon and A. Zippelius, Cancer chemotherapy agents target intratumoral dendritic cells to potentiate antitumor immunity, Oncoimmunology, 3 (2014).
doi: 10.4161/21624011.2014.954460.
|
[23]
|
M. R. Muppidi and S. George, Immune Checkpoint Inhibitors in Renal Cell Carcinoma, Journal of Targeted Therapies in Cancer 2015, 4 (2015), 47-52.
|
[24]
|
E. Obeid, R. Nanda, Y.-X. Fu and O. I. Olopade, The role of tumor-associated macrophages in breast cancer progression (review), Int. J. Oncol., 43 (2013), 5-12.
|
[25]
|
J. Palucka and J. Banchereau, Cancer immunotherapy via dendritic cells, Nat. Rev. Cancer, 12 (2012), 265-277.
|
[26]
|
C. Y. Perrot, D. Javelaud and A. Mauviel, Insights into the Transforming Growth Factor-beta Signaling Pathway in Cutaneous Melanoma, Ann. Dermatol., 25 (2013), 135-144.
|
[27]
|
R. Saenz, D. Futalan, L. Leutenez, F. Eekhout, J. F. Fecteau and S. Sundelius, et al., TLR4- dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J. Transl. Med., 12 (2014), 1-11.
|
[28]
|
M. R. Sharma, W. M. Stadler and M. J. Ratain, Randomized phase Ⅱ trials: a long-term investment with promising returns, Journal of the National Cancer Institute, 103 (2011), 1093-1100.
|
[29]
|
L. Shi, S. Chen, L. Yang and Y. Li, The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies, J. Hematol. Oncol., 6 (2013).
|
[30]
|
Y. B. Shui, X. Wang, J. S. Hu, S. P. Wang, C. M. Garcia and et al., Vascular endothelial growth factor expression and signaling in the lens. Invest. Ophthalmol. Vis. Sci., 44 (2003), 3911-3919.
|
[31]
|
G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst and A. J. Coyle, HMGB1 and RAGE in inflammation and cancer, Annu. Rev. Immunol., 28 (2010), 367-388.
|
[32]
|
S. Singh, N. Mehta, J. Lilan, M. B. Budhthoki, F. Chao and L. Yong, Initiative action of tumor-associated macrophage during tumor metastasis, Biochim Open, 4 (2017), 8-18.
doi: 10.1016/j.biopen.2016.11.002.
|
[33]
|
V. Umansky, C. Blattner, C. Gebhardt and J. Utikal, The role of myeloid-derived suppressor cells (MDSC) in cancer progression, Vaccines, 4 (2016), 1-16.
doi: 10.3390/vaccines4040036.
|
[34]
|
E. Vacchelli, Y. Ma, E. E. Baracco, A. Sistigu, D. P. Enot and F. Pietrocola, et al., Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1, Science, 350 (2015), 972-978.
|
[35]
|
T. L. Whiteside, The role of regulatory T cells in cancer immunology, Immunotargets Ther., 4 (2015), 159-171.
|
[36]
|
M. E. Young, Estimation of diffusion coefficients of proteins, Biotechnology and Bioengineering, XXII (1980), 947-955.
|
[37]
|
L. Zandarashvili, D. Sahu, K. Lee, Y. S. Lee, P. Singh and K. Rajarathnam, et al., Real-time kinetics of high-mobility group box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy, J. Biol. Chem., 288 (2013), 11621-11627.
|
[38]
|
J. Zhang, M. B. Patel, R. Griffiths, A. Mao, Y. soo Song and N. S. Karlovich, et al., Tumor necrosis factor-alpha produced in the kidney contributes to angiotensin Ⅱ-dependent hypertension, Hypertension, 64 (2014), 1275-1281.
|