[1]
|
M. H. A. Biswas, L. T. Paiva and M. R. de Pinho, A SEIR model for control of infectious diseases with constraints, Math. Biosci. Eng., 11 (2014), 761-784.
doi: 10.3934/mbe.2014.11.761.
|
[2]
|
F. Bonnans, P. Martinon, D. Giorgi, V. Grélard, S. Maindrault, O. Tissot and J. Liu, BOCOP 2.0.5 - User Guide, February 8, 2017, URL http://bocop.org
|
[3]
|
B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Springer, Berlin-Heidelberg-New York, 2003.
|
[4]
|
X. Cao, A. Datta, F. Al Basir and P. K. Roy, Fractional-order model of the disease psoriasis: A control based mathematical approach, J. Syst. Sci. Complex., 29 (2016), 1565-1584.
doi: 10.1007/s11424-016-5198-x.
|
[5]
|
C. Castilho, Optimal control of an epidemic through educational compaigns, Electron. J. Differ. Eq., 2006 (2006), 1-11.
|
[6]
|
B. Chattopadhyay and N. Hui, Immunopathogenesis in psoriasis throuth a density-type mathematical model, WSEAS Transactions on Mathematics, 11 (2012), 440-450.
|
[7]
|
A. Datta and P. K. Roy, T-cell proliferation on immunopathogenic mechanism of psoriasis: a control based theoretical approach, Control Cybern., 42 (2013), 365-386.
|
[8]
|
A. L. Donchev, Perturbations, Approximations, and Sensitivity Analysis of Optimal Control Systems, Lecture Notes in Control and Information Sciences, vol. 52, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0043612.
|
[9]
|
R. V. Gamkrelidze, Sliding modes in optimal control theory, P. Steklov Inst. Math., 169 (1986), 180-193.
|
[10]
|
A. Gandolfi, M. Iannelli and G. Marinoschi, An age-structured model of epidermis growth, J. Math. Biol., 62 (2011), 111-141.
doi: 10.1007/s00285-010-0330-3.
|
[11]
|
E. V. Grigorieva and E. N. Khailov, Optimal intervention strategies for a SEIR control model of Ebola epidemics, Mathematics, 3 (2015), 961-983.
|
[12]
|
E. V. Grigorieva and E. N. Khailov, Estimating the number of switchings of the optimal intervention strategies for SEIR control model of Ebola epidemics, Pure and Applied Functional Analysis, 1 (2016), 541-572.
|
[13]
|
E.V. Grigorieva, P.B. Deignan and E.N. Khailov, Optimal control problem for a SEIR type model of Ebola epidemics, Revista de Matemática: Teoria y Aplicaciones, 24 (2017), 79-96.
doi: 10.15517/rmta.v24i1.27771.
|
[14]
|
E. Grigorieva, P. Deignan and E. Khailov, Optimal treatment strategies for control model of psoriasis, in Proceedings of the SIAM Conference on Control and its Applications (CT17), Pittsburgh, Pensylvania, USA, July 10-12, (2017), 86-93.
doi: 10.1137/1.9781611975024.12.
|
[15]
|
J. E. Gudjonsson, A. Johnston, H. Sigmundsdottir and H. Valdimarsson, Immunopathogenic mechanisms in psoriasis, Clin. Exp. Immunol., 135 (2004), 1-8.
doi: 10.1111/j.1365-2249.2004.02310.x.
|
[16]
|
P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, 1964.
|
[17]
|
H. R. Joshi, S. Lenhart, M. Y. Li and L. Wang, Optimal control methods applied to disease models, in AMS Volume on Mathematical Studies on Human Disease Dynamics: Emerging Paradigms and Challenges, AMS Contemporary Mathematics Series, 410 (2006), 187-207.
doi: 10.1090/conm/410/07728.
|
[18]
|
M. V. Laptev and N. K. Nikulin, Numerical modeling of mutial synchronization of auto-oscillations of epidermal proliferative activity in lesions of psoriasis skin, Biophysics, 54 (2009), 519-524.
|
[19]
|
U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment, Discrete Cont. Dyn.-S, 2 (2011), 981-990.
|
[20]
|
E. B. Lee and L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, 1967.
|
[21]
|
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, CRC Press, Taylor & Francis Group, London, 2007.
|
[22]
|
M. A. Lowes, M. Suárez-Fariñas and J. G. Krueger, Immunology of psoriasis, Annu. Rev. Immunol., 32 (2014), 227-255.
doi: 10.1146/annurev-immunol-032713-120225.
|
[23]
|
L. A. Lusternik and V. J. Sobolev, Elements of Functional Analysis, Gordon and Breach Publishers, Inc., 1961.
|
[24]
|
S. L. Mehlis and K. B. Gordon, The immunology of psoriasis and biological immunotherapy, J. Am. Acad. Dermatol., 49 (2003), 44-50.
|
[25]
|
R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in disease modeling, in DIMACS Series in Discrete Mathematics, 75 (2010), 67-81.
|
[26]
|
G. Niels and N. Karsten, Simulating psoriasis by altering transit amplifying cells, Bioinformatics, 23 (2007), 1309-1312.
|
[27]
|
M. S. Nikol'skii, On the convergence of optimal controls in some optimization problems, Moscow University Computational Mathematics and Cybernetics, 1 (2004), 24-31.
|
[28]
|
H. B. Oza, R. Pandey, D. Roper, Y. Al-Nuaimi, S. K. Spurgeon and M. Goodfellow, Modelling and finite-time stability analysis of psoriasis pathogenesis, Int. J. Control, 90 (2017), 1664-1677.
doi: 10.1080/00207179.2016.1217566.
|
[29]
|
M. R. de Pinho, I. Kornienko and H. Maurer, Optimal control of a SEIR model with mixed constraints and $ L_{1} $ cost, in Controllo'2014 - Proceedings of the 11th Portuguese conference on automatic control, Lecture Notes in Electrical Engineering, vol. 321, Springer, Switzerland, 2015, 135-145.
|
[30]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, Mathematical Theory of Optimal Processes, The Macmillan Co., New York, 1964.
|
[31]
|
P. K. Roy, J. Bradra and B. Chattopadhyay, Mathematical modeling on immunopathogenesis in chronic plaque of psoriasis: A theoretical study, Lecture Notes in Engineering and Computer Science, 1 (2010), 550-555.
|
[32]
|
P. K. Roy and A. Datta, Negative feedback control may regulate cytokines effect during growth of keratinocytes in the chronic plaque of psoriasis: A mathematical study, International Journal of Applied Mathematics, 25 (2012), 233-254.
|
[33]
|
P. K. Roy and A. Datta, Impact of cytokine release in psoriasis: A control based mathematical approach, Journal of Nonlinear Evolution Equations and Applications, 2013 (2013), 23-42.
|
[34]
|
P. K. Roy and A. Datta, Impact of perfect drug adherence on immunopathogenic mechanism for dynamical system of psoriasis, Biomath, 2 (2013), article ID 121201, 6pp.
doi: 10.11145/j.biomath.2012.12.101.
|
[35]
|
N. J. Savill, R. Weller and J. A. Sherratt, Mathematical modelling of nitric oxide regulation of Rete Peg formation in psoriasis, J. Theor. Biol., 214 (2002), 1-16.
doi: 10.1006/jtbi.2001.2400.
|
[36]
|
N. J. Savill, Mathematical models of hierarchically structured cell populations under equilibrium with application to the epidermis, Cell Proliferat., 36 (2003), 1-26.
doi: 10.1046/j.1365-2184.2003.00257.x.
|
[37]
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer, New York-Heidelberg-Dordrecht-London, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[38]
|
H. Schättler and U. Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies. An Application of Geometric Methods, Springer, New York-Heidelberg-Dordrecht-London, 2015.
doi: 10.1007/978-1-4939-2972-6.
|
[39]
|
J. A. Sherratt, R. Weller and N. J. Savill, Modelling blood flow regulation by nitric oxide in psoriatic plaques, J. Math. Biol., 64 (2002), 623-641.
doi: 10.1006/bulm.2001.0271.
|
[40]
|
N.V. Valeyev, C. Hundhausen, Y. Umezawa, N.V. Kotov, G. Williams, A. Clop, C. Ainali, G. Ouzounis, S. Tsoka and F.O. Nestle, A systems model for immune cell interactions unravels the mechanism of inflammation in human skin, PLoS Computational Biology, 6 (2010), e1001024, 1-22.
doi: 10.1371/journal.pcbi.1001024.
|
[41]
|
F. P. Vasil'ev, Optimization Methods, Factorial Press, Moscow, 2002.
|
[42]
|
A. Visintin, Strong convergence results related to strict convexity, Commun. Part. Diff. Eq., 9 (1984), 439-466.
doi: 10.1080/03605308408820337.
|
[43]
|
M. I. Zelikin and V. F. Borisov, Theory of Chattering Control: With Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, Boston, 1994.
doi: 10.1007/978-1-4612-2702-1.
|
[44]
|
M. I. Zelikin and L. F. Zelikina, The deviation of a functional from its optimal value under chattering decreases exponentially as the number of switchings grows, Diff. Equat., 35 (1999), 1489-1493.
|
[45]
|
M. I. Zelikin and L. F. Zelikina, Asymptotics of the deviation of a functional from its optimal value when chattering is replaced by a suboptimal regime, Russ. Math. Surv., 54 (1999), 662-664.
doi: 10.1070/rm1999v054n03ABEH000174.
|
[46]
|
H. Zhang, W. Hou, L. Henrot, S. Schnebert, M. Dumas, C. Heusèle and J. Yang, Modelling epidermis homoeostasis and psoriasis pathogenesis, Journal of The Royal Society Interface, 12 (2015), 1-22.
doi: 10.1098/rsif.2014.1071.
|
[47]
|
J. Zhu, E. Trélat and M. Cerf, Planar titling maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering, Discrete Cont. Dyn.-B, 21 (2016), 1347-1388.
doi: 10.3934/dcdsb.2016.21.1347.
|