In the paper, we derive a maximum principle for a Bolza problem described by an integro-differential equation of Volterra type. We use the Dubovitskii-Milyutin approach.
Citation: |
[1] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011.
![]() ![]() |
[2] |
M. Ya. Dubovitskii and A. A. Milyutin, The extremum problem in the presence of constraints, Dokl. Acad. Nauk SSSR, 149 (1963), 759-762.
![]() |
[3] |
M. Ya. Dubovitskii and A. A. Milyutin, Extremum problems in the presence of constraints, Zh. Vychisl. Mat. i Mat. Fiz., 5 (1965), 395-453.
![]() ![]() |
[4] |
I. W. Girsanow, Lectures on Mathematical Theory of Extremum Problems, Springer, New York, 1972.
![]() ![]() |
[5] |
D. Idczak and S. Walczak, Application of a global implicit function theorem to a general fractional integro-differential system of Volterra type, Journal of Integral Equations and Applications, 27 (2015), 521-554.
![]() |
[6] |
D. Idczak, Optimal control of a coercive Dirichlet problem, SIAM J. Control Optim., 36 (1998), 1250-1267.
doi: 10.1137/S0363012997296341.![]() ![]() ![]() |
[7] |
D. Idczak, A. Skowron and S. Walczak, On the diffeomorphisms between Banach and Hilbert spaces, Advanced Nonlinear Studies, 12 (2012), 89-100.
doi: 10.1515/ans-2012-0105.![]() ![]() ![]() |
[8] |
D. Idczak, A. Skowron and S. Walczak, Sensitivity of a fractional integrodifferential Cauchy problem of Volterra type, Abstract and Applied Analysis, 2013 (2013), Article Id 129478, 8 pages.
doi: 10.1155/2013/129478.![]() ![]() ![]() |
[9] |
A. D. Ioffe and V. M. Tikhomirov, Theory of Extremum Problems, North-Holland, 1979.
![]() ![]() |
[10] |
U. Ledzewicz, A necessary condition for a problem of optimal control with equality and inequality constraints, Control and Cybernetics, 14 (1985), 351-360.
![]() ![]() |
[11] |
U. Ledzewicz, On some specification of the Dubovitskii-Milyutin method, Nonlinear Analysis: theory, methods and Applications, 10 (1986), 1367-1371.
doi: 10.1016/0362-546X(86)90107-0.![]() ![]() ![]() |
[12] |
U. Ledzewicz, Application of the method of contractor directions to the Dubovitskii-Milyutin formalism, Journal of Mathematical Analysis and Applications, 125 (1987), 174-184.
doi: 10.1016/0022-247X(87)90172-7.![]() ![]() ![]() |
[13] |
U. Ledzewicz, Application of some specitfication of the Dubovitskii-Milyutin method to problems of optimal control, Nonlinear Analysis: Theory, Methods and Applications, 10 (1986), 1367-1371.
doi: 10.1016/0362-546X(86)90107-0.![]() ![]() ![]() |
[14] |
U. Ledzewicz, H. Schättler and S. Walczak, Stability of elliptic optimal control problems, Comput. Math. Appl., 41 (2001), 1245-1256.
doi: 10.1016/S0898-1221(01)00095-5.![]() ![]() ![]() |
[15] |
V. Volterra, Sulle equazioni integro-differenziali, R. C. Acad. Lincei (5), 18 (1909), 167-174.
![]() |
[16] |
V. Volterra, Sulle equazioni della elettrodinamica, R. C. Acad. Lincei (5), 18 (1909), 203-211.
![]() |
[17] |
V. Volterra, Sulle equazioni integro-differenziali della teoria dell’elasticita, R. C. Acad. Lincei (5), 18 (1909), 296-301.
![]() |
[18] |
V. Volterra, Equazioni integro-differenziali della elasticita nel caso della isotropia, R. C. Acad. Lincei (5), 18 (1909), 577-586.
![]() |